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Abstract

Wicking of liquids into porous media is of great importance to many applications. One example are propellant management devices
(PMD) used in spacecraft tanks. PMDs are designed to ensure gas free delivery of propellant during all acceleration conditions of
the flight. This might be achieved by a metallic weave which is wetted by the propellant and thus prevents gas from entering below
a critical bubble point pressure. In the case of cryogenic or volatile liquids the weave may dry out and refilling of the structure
becomes an important issue. In this study we analyze the wicking of different liquids into a dry Dutch Twilled Weave (DTW
200× 1400) by combining experimental and analytical approaches. Experiments were performed under isothermal and terrestrial
conditions to investigate the role of evaporation for the capillary rise. The standard wicking model from Lucas and Washburn is
enhanced to account for evaporation and gravity effects, too. By comparing the experimental results with the enhanced wicking
model we find good qualitative agreement. It is also noted that evaporation may have a major impact on the wicking process.
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INTRODUCTION

Motivation

The main problem in spacecraft propellant tanks is the
lack of gravity to define ”up” and ”down”. Propellant man-
agement devices are designed to i) ensure a constant con-
nection between propellant and tank outlet (communica-
tion type) or ii) confine the propellant at a designated loca-
tion (control type) [1–3]. Fig. 1 shows a total communica-
tion type PMD including galleries with porous screen win-
dows in them. The screens are made of a metal weave and
are passive surface tension devices. They allow propellant
to penetrate but prevent gas from entering below a critical
bubble point pressure. This mechanism requires the weave
to be always saturated with propellant. If the screen is par-
tially dry, wicking can be regarded as a self healing mech-
anism to restore saturation. Hereby, wicking performance
strongly depends on the degree of evaporation from the
porous screen. This paper shows how fluid mechanic prop-
erties like the permeability of the weave are experimentally
investigated, and presents a new evaporation model that

∗ Corresponding author.

E-mail address: dreyer@zarm.uni-bremen.de

Fig. 1. Propellant management device (PMD) of the Automated

Transfer Vehicle [4] (slightly modified).

allows to predict the effect of evaporation on the capillary
rise.

State of the art

When a fluid enters a porous medium due to capillary
effects, a complex flow field develops within its pores. This
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wicking depends on geometrical and physical properties of
both the weave (see Fig. 2) and the liquid. Many papers
study this capillary penetration of liquids into porous me-
dia, some of them are summarized below.

Van Oss et al. [5] for example determine contact angles
and pore sizes of porous media by column and thin layer
wicking. They demonstrate that low-surface-energy liquids
pre-wet the surface over which they subsequently spread.
Siebold et al. [6] focus on total wetting liquids in powders
for which contact angles are zero at equilibrium. They show
that during the rising process the contact angle is higher
than expected and propose a new method to calculate the
constant terms in the Lucas-Washburn equation. A review
article written by Bachmann et al. [7] describes the avail-
able methods to determine the wetting properties of porous
media. Chibowski et al. [8] review existing literature on for-
mulation and determination of free surface energy. Further-
more, they depict contact angle problems that also involve
spreading liquids.

Theoretical studies of the wicking rate in porous media
have also received significant attention. Many models of
the pore space in such media are based on capillary tubes.
This includes for example Lucas [9] and Washburn [10] who
study dynamic invasion of fluid into a capillary, Levine et
al. [11] who examine the departure from Poiseuille flow in
the vicinity of an advancing meniscus in a vertical cylin-
drical capillary and Marmur [12] who examines the ther-
modynamic and kinetic effects on capillary penetration in
systems of limited size. Symons [13] conducted a study to
determine the magnitude of wicking rates in various screens
including the one used in the present study: Dutch Twilled
Weave (DTW) 200 × 1400. He developed an analytical
model for the wicking process which expresses the wicking
velocity as a function of liquid properties and geometrical
parameters. His experimental data confirm the validity of
his model. However, due to the complexity of the pore ge-
ometry within the screen it is necessary to merge several
screen geometry parameters into a single constant. He also
investigates the effect of evaporation and local heat sources.
The extraction of pore structure parameters out of capillary
rise observations is also described by Fries et al. [14]. Based
on the momentum equation Stange [15,16] claims that the
capillary rise process can be divided into four successive
stages with i) an initial h ∼ t2 domain corresponding to the
local acceleration of the liquid, ii) a h ∼ t domain related
to the convective losses, iii) a h ∼

√
t domain related to vis-

cous dissipation and finally iv) a h ∼ 1 − e−(1+ct) domain
due to the gravity deceleration. The domains are separated
by characteristic times.

The inertia dominated flow regime was also examined
by Quere [17]. In the non-inertial capillary flow regime
many authors, for example [2,13,10], favor a simple model
in which the capillary pressure is balanced only by viscous
friction and hydrostatic pressure. For many cases wicking
in porous media can be regarded as a process where the
inertial forces can be neglected most of the time.

THEORETICAL MODEL
(no evaporation)

When a liquid encounters a solid medium (as shown
schematically in Figs. 4 and 5), a rapid rise of the liquid on
the external surface occurs. This process is called wetting.
If the solid medium has a porosity φ and a permeability K
there will be also an internal wicking beside the external
wetting. Both processes rely on the capillary pressure, but
in contrast to the wetting process the internal menisci that
drive the wicking are bound to the pore radius Rs. The
momentum balance for the wicking process gives

2σ cos θs

Rs
=

φ

K
µhv + ρgh, (1)

where σ is the surface tension, θs the contact angle formed
between solid and liquid, ρ the fluid density, and g grav-
ity. The term on the left hand side represents the capillary
pressure generated by the curvature of the liquid-vapor in-
terface that is predetermined by the static radius Rs. This
surface pressure is balanced by the terms on the right-hand
side which correspond to viscous friction and gravity, re-
spectively. The friction in Eq.(1) is expressed by Darcy’s
law (valid for laminar flow), which has also been used by
Symons [13] and Marmur [18] in this context

∆p =
φ

K
µhv, (2)

where µ is the viscosity of the liquid, v the (intersticial) ve-
locity of the liquid and h the fluid height in the medium.
To extract the pore parameters φ, K and Rs from measure-
ments we use the approach that is proposed by Lucas [9]
and Washburn [10]. By neglecting gravity and solving for
the initial condition h(t → 0) = 0 one obtains the Lucas-
Washburn equation (here with permeability K)

h2 =
4σ cos θs

φµ

K

Rs
t. (3)

From this equation it can be seen that there is a linear
correlation between h2 and t as long as the assumptions (no
inertia, no gravity) hold. The maximum reachable height
for t →∞ can be calculated. One obtains

hmax =
2σ cos θs

ρgRs
, (4)

which is also used by Lucas [9] and others. The pore param-
eters of the material can now be calculated when h(t) from
the non-inertial, no gravity domain of the wicking process
and hmax from the final domain are known.

In their original equation Lucas and Washburn apply
the Hagen-Poiseuille law used in the ”bundle of capillary
tubes” model

∆p =
8µhv

R2
d

, (5)

instead of Darcy’s law that accounts for porous media.
Here, Rd is the mean hydrodynamic radius of the pores
(Siebold et al. [6]). Comparing the Darcy and Hagen-
Poiseuille law (Eqs. (2), (5)), one can directly relate the
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permeability K to the hydrodynamic radius Rd. Porosity
φ is included as the two laws are defined for the intersti-
cial velocity (Hagen-Poiseuille) and the superficial velocity
(Darcy), respectively. Hence

8
R2

d

=
φ

K
. (6)

As mentioned before, Eq. (3) derived by Lucas and Wash-
burn is only valid for flows with neither inertia nor gravity
effects. Therefore, a fully analytic solution of Eq. (1) in-
cluding gravity is given by Washburn [10] and Lukas and
Soukupova [19] as well, however in terms of t(h) and not
h(t). One may define two constants:

a =
2σ cos θs

φµ

K

Rs
(7)

and

b =
ρgK

φµ
. (8)

Using them in Eq. (1) and solving the resulting differential
equation

ḣ =
a

h
− b (9)

for the initial condition h(t → 0) = 0 gives

t = −h

b
− a

b2
ln
(

1− bh

a

)
. (10)

This equation allows to calculate the time t needed for the
wicking front to reach a certain height h. It can be trans-
formed to a function h(t) by mathematical means as shown
by Fries and Dreyer [20].

To relate the imbibed fluid mass to the observed wicking
height the following linear relation is assumed to hold

m = TWφ ρh, (11)

with W being the weave width and T the thickness. Finally
the Lucas-Washburn equation Eq. (3) can be modified to
give the mass gain m instead of the height h, resulting in

m2 = (TWφ ρ)2
4σ cos θs

φµ

K

Rs
t. (12)

Dimensional analysis

To scale Eq. (1) it is appropriate to use the characteristic
height hc = 2Rs, a characteristic velocity

vc =
√

2σ

ρRd
,

and a characteristic time

tc =
ρR2

d

8µ
.

This definition is, for example, used by Stange [15]. With
the dimensionless variables h∗ = h/hc and v∗ = v/vc Eq.
(1) reads

cos θs = 8Λ2Ohh∗v∗ + Boh∗ . (13)

Three dimensionless groups appear in this equation: an as-
pect ratio Λ = Rs/Rd, the Ohnesorge number

Oh =

√
2µ2

ρσRd
,

and the Bond number

Bo =
ρgR2

s

σ
.

Using this scaling, the experimental results merge into one
master curve, as shown later (see Fig. 9).

EXPERIMENTS

Weave and fluid properties

Experiments were performed with a weave screen (see
Figure 2) typical for the use within PMDs and test liquids
with similar physical properties as typical propellants used
in satellites (see Table 1). All liquids used in the experi-
ments feature a near zero contact angle with respect to the
weave material, but different vapor pressures which allows
to investigate the effect of evaporation. As the static con-
tact angle θs between all test liquids and the weave is near
zero, cos θs is assumed to be equal to one for all experiment
evaluations.

Table 1

Fluid properties at 25 ◦C. Source: product data sheet of the listed
liquids (3M for HFE 7500, FC-77, FC-72, FC-87 and Dow Corning

for Silicone Fluid 0.65).

σ ρ µ pv

10−3 10−3 103

[N/m] [kg/m3] [Pas] [Pa]

SF 0.65 15.9 758 0.49 4.4

HFE-7500 16.2 1610 1.24 2.1

FC-77 15.0 1780 1.28 5.6

FC-72 12.0 1680 0.64 30.9

FC-87 9.0 1650 0.45 81.1

The porous screen is a Dutch Twilled Weave (DTW)
200× 1400 (Fig. 2 and Table 2). The samples are laser-cut
in rectangular shapes with precise dimensions (H = 50 mm
by W = 10, 14, 16 or 18 mm). They either have the warp
wires or the weft wires running perpendicular to the screen
width. If the wicking process is occurring parallel to the
warp wires we define the flow to be in warp direction, corre-
spondingly for the weft direction. The microstructure qual-
ity of each specimen is checked using a microscope to detect
any defects at the edges of the samples. Subsequently, the
selected weave undergoes a cleaning protocol that removes
any dust or grease left on the surface or in the interstices.
This is performed using an ultrasonic bath with a metal
cleaner Turco (supplier: Henkel).
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Fig. 2. Drawing of the microstructure (left) and photograph (right)

of the Dutch-Twilled weave (DTW) 200× 1400 (supplier: Spoerl).

Table 2
Properties of the weave.

weave material AISI 304 L

(stainless steel)

type Dutch Twilled Weave

200 × 1400 200 warp wires/inch

1400 weft wires/inch

warp wire diameter [µm] 70

weft wire diameter [µm] 40

H: weave height [mm] 50 ±0.01

T : weave thickness [µm] 149 ±1

W : weave width [mm] (10,14,16,18) ±0.01

Experimental setup and data acquisition

Fig. 3 displays an overview of the wicking experimental
setup. Basically the setup consists of

Fig. 3. Photography of the wicking experimental setup.

• a rectangular test chamber (50x50 mm2 base area, 90
mm height) that contains the test liquid and the weave
specimen suspended above the liquid surface,

• a video camera to record the wicking liquid front height
versus time,

• an electronic balance with an accuracy of ±0.3 mg to
which the weave is attached by threads.

Fig. 4. Sketch of the test chamber prior to wicking experiments.

Fig. 4 shows a sketch of the arrangement. The weave is
positioned for 1 hour above the test liquid surface prior to
the experiment start. During this time no increase in the
sample mass is recorded for all test liquids which means no
significant capillary condensation occurs in the weave. The
test chamber is closed, however there are two holes in the
cover to attach the weave to the balance. Vapor diffusion
through these holes can be adjusted as the size of the holes
can be varied to investigate different evaporation rates. To
further increase the evaporation rate the sealing top can be
left open. The weave environment is therefore composed of
air and vapor of the test liquid. The recording of the wicking
front is done with a camera at 25 Hz. The resolution of the
camera and the lens is 0.07 mm/pixel. The balance can be
precisely and continuously moved up and down by means
of an automated lift in order to sink the weave into the test
liquid with a constant velocity of 1 mm/s. Data acquisition
is controlled using the commercial software Labview.

The applied coordinate system is illustrated by Fig. 5
where the weave is immersed in the test liquid.

Fig. 5. Coordinates applied to the weave sample.

The height of the liquid front is the sum of three heights:

h = hw + hl + h0. (14)

Here, hw is the height due to the wicking process. hl is the
immersion depth of the weave in the liquid, a safety length
to ensure contact with the test liquid: hl ≈ 0.55 mm. h0 is
the height up to which the weave is covered with liquid due
to the wetting phenomenon.
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Evaluation of experimental results - height approach

By measuring the maximum achievable wicking height
hmax that occurs due to the equilibrium between the cap-
illary and the gravity forces (see Eq. (4)), the static ra-
dius Rs can be calculated and thus, knowing K/Rs from
an other experiment, the permeability K. The maximum
height is typically reached after about five days of liquid
rise. In order to measure hmax, an additional larger scale
setup is used as hmax (depending on the liquid) is higher
than the test chamber. The larger setup did not feature
a balance but was sealed to prevent any evaporation. The
results gave Rs = (13.7± 0.95) µm.

Table 3
Maximum heights for Rs = 13.7 µm and no evaporation.

Fluid SF 0.65 HFE-7500 FC-77 FC-72 FC-87

hmax [mm] 312 150 125 106 81

To extract the permeability K out of experimental results
the linear part of h2(t) and m2(t) graphs can be used. In
this domain of the wicking process the influence of gravity is
negligible. Using Eq. (3) the parameter K/Rs is extracted
from the slope of the h2(t) curve.

Fig. 6. Wicking of HFE-7500 into the weave.

An image series of the wicking process is presented in
Fig. 6. The single frames of an image series are then pro-
cessed with the commercial software MatLab to extract
the actual wicking height. At the liquid front line, a mean
height out of all pixel along the total width of the weave is
calculated with a standard deviation of ±5 pixel as shown
in Fig. 5.

Fig. 7. Wicking height raw data (warp direction) with error bars
(standard deviation is ±5 pixel).

Fig. 7 shows the resulting time dependencies of the wick-
ing height for three test liquids and a 16 mm wide screen.
As expected the slope is much steeper in the beginning of
the measurement and decreases in time.

Fig. 8. Squared height over time (warp direction) with linear fitting

(no error bars for graph clarity).

In Fig. 8, the squared height is plotted versus time. Near
the origin a constant slope can be seen where a linear regres-
sion curve is calculated using the method of least squares to
extract the pore parameters. For the linear regression the
experimental values between the origin of the curve and h
up to about 10% of the maximum reachable height hmax

as given in Table 3 are used. This is consistent with the an-
alytical solution presented by Fries and Dreyer [20] where
under the influence of gravity the Lucas-Washburn equa-
tion is calculated to be valid for h up to 10% of hmax. Table
4 contains the K/Rs results for different fluids and their
correlation coefficient.

Table 4

K/Rs calculated from height measurements (warp direction). Num-

bers in brackets are correlation coefficients r2, ± refers to the stan-
dard deviation. K calculated with Rs = 13.7 µm.

K/Rs (experimental) K

[µm] [µm2]

SF 0.65 0.0589 (0.995) 0.81

HFE-7500 0.0448 (0.997) 0.61

FC-77 0.0506 (0.992) 0.69

Average 0.0514 ±0.0071 0.70 ±0.10

The values from Table 4 reveal that there is a small de-
viation between the measurements made with different liq-
uids. The average is K/Rs = 0.0514 µm with a standard
deviation of 0.0071 µm. Further measurements were also
conducted using weaves with different widths ranging from
10 to 18 mm but a comparison of the results showed no
significant influence of the width. The experimental data
shown in Fig. 7 are now scaled with the characteristic num-
bers derived in the theoretical section, namely the Oh num-
ber and the Bo number. Fig. 9 shows the characteristic
height scale versus the characteristic time scale for the ex-
perimental points and a numerical solution of Eq. (13). The
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data collapses to one master curve. This confirms the rele-
vance of the non-dimensional numbers to characterize the
wicking behavior, but also enables the prediction of any
other liquid front line height. The validity of numerical re-
sults applies approximately from (t/tc) Oh equal 3×104 to
1 × 107, while the lack of coincidence below 3 × 104 could
be explained by the difficulty to get precise height respec-
tively mass values at the beginning of the wicking process
due the overlapping between wetting and wicking.

Fig. 9. Dimensionless representation of the experimental measure-

ments (height method, warp direction) and numerical solution of Eq.
(13) for the test liquids.

Evaluation of experimental results - mass approach

The chronology of a mass measurement is shown in
Fig. 10. The curve is divided into six parts, describing the
weave from the imbibition to the drying.

Fig. 10. Mass versus time curve (open test chamber). Imbibition of
a weave (50x16mm) by HFE-7500.

At first, the weave is brought into contact with the test
liquid inducing the wetting process. The liquid will then

start to wick into the weave, while the mass will increase
to finally reach a plateau value. In the absence of evapo-
ration this corresponds to the equilibrium state between
capillary and hydrostatic pressure. During the de-wetting
the contact between weave and liquid is lost and the outer
meniscus detaches. Finally, the last step belongs to liquid
evaporation out of the weave which will only take place in
unsaturated environments (e.g. open test chamber). This
part of the curve is of great interest to evaluate the evap-
oration rate and will be described in further detail later.
The result of a wicking mass versus wicking height mea-
surement is shown in Fig. 11. It verifies the linear behavior
and furthermore allows to calculate the ”wicking effective
porosity”. Other methods to measure or predict the poros-
ity of a weave are given by Armour and Cannon [21]. Using
Eq. (11) the porosity can be calculated out of the slope (see
Fig. 11) to be φ = 0.24± 0.03.

Fig. 11. Liquid mass inside the weave versus wicking height

(HFE-7500 in 16 mm wide sample, warp direction). Prediction using
Eq. (11).

According to Eq. (12) mass measurements can be used
to calculate pore structure parameters like the permeabil-
ity of the weave. The advantage of this ”mass method” is
that no image processing is necessary to evaluate the wick-
ing height from video recordings. When considering ex-
perimental investigations using cryogenic liquids the mass
method is an attractive alternative. This is because cryo-
genic liquids tend to render optical methods unpracticable
by condensation on lenses. However, the mass method also
features some disadvantages when compared to the optical
measurement. As the weave is basically a two dimensional
medium (0.15 mm thickness compared to 16 mm width)
its wetted circumference is large compared to its volume.
Thus the initial effect of wetting, the attachment of an outer
meniscus to the weave, is a significant rise in mass when
compared to the mass gain due to the wicking effect. As
Fig. 10 illustrates, the wetting mass gain within a fraction
of the first second is a significant portion of the total mass
gain. Also, when the weave is brought into contact with
the liquid, both effects occur at the same time and may
be hard to distinguish. To obtain the ”real wicking mass”
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the ”de-wetting mass” (see Fig. 10) is subtracted from the
mass raw data, as the initial jump in mass refers to both
the wetting and wicking process.

Analogous to the height method, Fig. 12 shows the
squared wicking mass gain plotted versus time. From the

Fig. 12. Squared mass over time (warp direction) with linear fitting
(no error bars for graph clarity).

slope of the m2(t) curves the weave parameters presented
in Table 5 were calculated using Eq. (12). The values of
Table 5 show good agreement with the ones calculated
with the height method (Table 4).

Table 5
K/Rs for the warp direction calculated from mass measurements.

Numbers in brackets are correlation coefficients r2, ± refers to the

standard deviation. K calculated with Rs = 13.7 µm.

K/Rs, warp K, warp

[µm] [µm2]

SF 0.65 0.0565 (0.993) 0.77

HFE-7500 0.0544 (0.996) 0.75

FC-77 0.0496 (0.999) 0.68

Average 0.0535 ±0.0035 0.73 ±0.05

The results presented in Table 6 refer to the capillary
rise in weft direction. It is assumed that the static radius
Rs that defines the capillary pressure is equal for warp and
weft direction. The mass and height curves for the weft
direction are fairly similar to the ones in warp direction,
however the liquid rises more slowly. This is due to the
higher flow resistance in the weft direction. This can also
be seen by the permeability K in Table 6 which is about
half the value of K for the warp direction. An overview of
our experimental findings is provided by Table 7. It also
shows a comparison of the obtained results with literature
which verifies our results to some extent. Dodge cites [22]
as a source, where evaporation is not suppressed during the
experiment. Thus, the higher evaporation rate may explain
the deviation. Dodge does not use the pore parameters used
in this work but his ones can be converted by the following
correlations

Φw

DBP
=

2
Rs

(15)

and
Cw

B2
s

=
φ

K
. (16)

Table 6
K/Rs for the weft direction calculated from mass measurements.

Numbers in brackets are correlation coefficients r2, ± refers to the

standard deviation. K calculated with Rs = 13.7 µm.

K/Rs, weft K, weft

[µm] [µm2]

SF 0.65 0.0255 (0.987) 0.35

HFE-7500 0.0283 (0.996) 0.39

FC-77 0.0259 (0.998) 0.35

Average 0.0266 ±0.0015 0.36 ±0.02

Table 7

Overview - experimental results and comparison with literature

(Dodge [23] and Symons [13]).

our value Dodge Symons

θ: porosity 0.24 ±0.03 0.272

Rs[µm], warp 13.7 ±0.95 88.1 7.0

Rs[µm], weft 13.7 ±0.95 124.4 7.0

our height method Dodge Symons

K[µm2], warp 0.70 ±0.10

our mass method Dodge Symons

K[µm2], warp 0.73 ±0.05

K[µm2], weft 0.36 ±0.02

K/Rs[µm], warp 0.0535 0.0408 0.0462

K/Rs[µm], weft 0.0266 0.0132 0.0150

Dodge defines Φ as a screen characteristic parameter (not
the porosity), DBP as the effective pore diameter, Cw as
a wicking friction parameter and Bs as the screen thick-
ness. Symons uses a correlation constant c. For the static
radius in warp direction Dodge obtains Rs = 88.1 µm and
124.4 µm for the weft direction. Symons uses Rs = 7.0 µm
for warp and weft direction alike, however this value is based
on the manufacturer’s rated pore size. Altogether it can be
seen that there is fair agreement between the K/Rs values,
however discrepancies for the Rs results which may be ex-
plained by the sensitivity of the experiment to evaporation.

The effect of evaporation

Looking at Fig. 10, evaporation affects the periods 4 and
6. It is the only and hence crucial mechanism for the dry-
ing period 6, which is used for its measurement. It is char-
acterized by the evaporation rate ṁe which is the mass of
evaporated liquid per area and time [kg/m2 s]. ṁe has to be
calculated individually for each experiment as it depends
on the used test liquid, temperature and saturation of the
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surrounding air. To obtain different values of the evapo-
ration rate the size of a ventilation hole on the top of the
test chamber was varied. It could also be completely closed
to prevent evaporation at all. Assuming evaporation from
both sides of the weave the total mass flow due to evapo-
ration is

Ṁe = 2ṁeh(W + T ). (17)

Here, h refers to the wetted height of the weave. The evap-
oration mass curves can roughly be divided into two dry-
ing periods. The first part of the curve is linear and cor-
responds to the drying when the weave is completely sat-
urated. The second part which is nonlinear reveals a re-
duction of the drying rate when the amount of liquid is
reduced below a certain level in the weave structure. As
given by Kaviany [24], the liquid is trapped at this dry-
ing stage due to capillary forces. The effective evaporation
rate which is of interest to understand the capillary rise
under the effect of evaporation is the linear part, as it is as-
sumed that the weave, once the wicking front has passed,
is completely saturated and thus refers to this evaporation
regime. As already mentioned by Symons [13], the wicking
of a liquid into a weave can be effected by evaporation or
local heat sources. In our study no external heat sources
were applied. However, the experimental setup allowed to
investigate the influence of different evaporation rates on
the capillary rise in warp direction. The evaporation occurs
due to the vapor pressure of the test liquids that leads to
a layer of vapor over the weave surface. Due to diffusion
and convection the vapor is distributed in the surrounding
air so that more liquid can evaporate. It is assumed, since
only relatively small amounts of liquid evaporate, that the
enthalpy of evaporation can be neglected when compared
to the heat capacity of the saturated weave and heat con-
duction from the gaseous species. As the weave is basically
a two dimensional medium its outer surface is large com-
pared to its volume which transports the liquid internally.
Thus the effect of evaporation is fairly large. In Fig. 13 the
different wicking heights of the test liquid HFE-7500 are
presented. The influence of evaporation is clearly visible.
The experiments were either performed by the authors or
Kaya [25].

Table 8

Experiments performed using HFE-7500.

specimen width

W

chamber

aperture

ṁe (measured)

[mm] [mm2] [kg/m2 s]

exp1 16 55 7.097× 10−6

exp2 16 2500 4.357× 10−4

exp3 18 55 1.808× 10−6

exp4 18 2500 4.681× 10−4

Knowing about the strong effect of evaporation it is of
interest to develop a model capable of explaining the pro-
cess and allowing to predict the deviations from unaffected
capillary rise.

Fig. 13. Height calculated from mass recordings of HFE-7500 wick-

ing into the weave. The evaporation rate affects the reached height
significantly. See Table 8 for further details.

EVAPORATION MODEL

While the liquid rises in the metal weave it is exposed to
the ambient atmosphere at the outer pores. If the surround-
ing gas is not saturated with the vapor of the liquid, evapo-
ration out of these pores can occur. Due to the continuous
loss of liquid because of the evaporation the advance of the
liquid front line will be more slowly than in a setup with-
out evaporation. In this chapter we extend the theoretical
model given by Symons [13], which can then be used to ex-
plain the experimental findings. For the model presented
below the assumption has been made that the evaporation
is uniformly distributed and is given by the area normal-
ized evaporation rate ṁe [kg/m2 s]. The evaporation rate is
constant ṁe = const. 6= f(h, z). This assumption is valid
if no point heat sources are affecting the local evaporation
and if the transport of the gaseous (evaporated) species
away from the weave is not restricted by the build up of a
boundary layer (constant concentration gradient). Finally,
the total evaporation mass flow Ṁe is given by Eq. (17) as
stated in the previous chapter. Fig. 14 displays the integral
and differential mass balance of the weave. It can be seen
that the total mass inflow Ṁ(z = 0) is made up of two com-
ponents - the mass flow necessary to supply the movement
of the liquid front Ṁḣ and the total evaporation mass flow
Ṁe. Ṁḣ is given by

Ṁḣ = ḣρAb = ḣρWTφ. (18)

Here, Ab refers to the effective bottom area of the weave.
Regarding Fig. 14, the differential mass balance can be ex-
pressed as

dṀ(z) = Ṁ(z + dz)− Ṁ(z) = −2ṁe(W + T )dz. (19)

When integrating and using the boundary condition that
the total mass inflow at z = 0 must be equal to Ṁḣ + Ṁe,
one obtains

Ṁ(z) = Ṁḣ + 2ṁe(W + T )h
(
1− z

h

)
. (20)

The local mass flow Ṁ(z) can now be given in form of a
flow velocity which is then used to calculate the viscous

8



Fig. 14. Mass balance of a wicking process with evaporation.

pressure loss. The flow velocity in the weave is composed
of two parts. The first part corresponds to the liquid front
velocity ḣ, which is constant over the weave height as is Ṁḣ.
The second is the refill velocity vr to refill the evaporated
liquid, which is height dependent. Where the weave is in
contact with the liquid surface (z = 0) the refill velocity
reaches its maximum value of

vr,0 =
Ṁe

ρAb
=

2ṁeh(W + T )
ρWTφ

. (21)

The assumption of a constant evaporation rate at the outer
weave surface leads to a linear dependence of the refill ve-
locity (see Eq. (20)) reading

vr(z) = vr,0

(
1− z

h

)
, (22)

thus it can be seen that vr linearly reduces to zero at the
actual height h(t). Fig. 15 displays the velocity distribution
of the liquid inside the weave. The momentum balance of

Fig. 15. Velocities involved in a wicking process with evaporation.

the liquid inside the metallic weave gives

pc = ph + pḣ + pr (23)

where the individual terms refer to (from left to right):
– capillary pressure (2σ cos θs/Rs)
– gravity term (hydrostatic pressure, ρgh)
– viscous pressure loss pḣ (Darcy) due to ḣ
– viscous pressure loss pr (Darcy) due to vr(z)
The viscous pressure terms can be calculated as

pḣ =
φ

K
µ

∫ h

0

ḣdz =
φ

K
µhḣ, (24)

and with Eq. (22)

pr =
φ

K
µ

∫ h

0

vr(z)dz =
φ

K
µ

1
2
hvr,0. (25)

Thus, including the effect of evaporation, the final differ-
ential equation becomes

2σ cos θs

Rs
= ρgh +

φ

K
µhḣ +

µṁe(W + T )
KρWT

h2. (26)

This equation can be transformed to the following form

ḣ =
a

h
− b− ch, (27)

where the coefficients a, b and c are defined as

a =
2σ cos θs

φµ

K

Rs
, (28)

b =
ρgK

φµ
, (29)

c =
ṁe(W + T )

ρWTφ
. (30)

Setting ḣ = 0 in Eq. (27) we find maximum heights for the
following different cases: i) No evaporation occurs (c = 0)
and only gravity restricts the maximum reachable height,
given by

hmax,a,b =
a

b
. (31)

ii) No gravity (b = 0) is affecting the liquid rise, however
evaporation has an effect resulting in

hmax,a,c =
√

a

c
. (32)

iii) Both terms (gravity and evaporation) have to be con-
sidered leading to

hmax,a,b,c =
−b

2c
+

√
b2

4c2
+

a

c
. (33)

iv) Finally no gravity and no evaporation restrict the capil-
lary rise, hence there is no limit in the maximum reachable
height, as is also predicted by the Lucas-Washburn equa-
tion.

Analytic solution

Starting from Eq. (27) we can derive an analytic expres-
sion for the time needed to reach a certain height of the liq-
uid front t(h), accounting also for evaporation and gravity.
Rewriting Eq. (27) gives∫

h

−ch2 − bh + a
dh =

∫
1dt. (34)
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The solution to the first integral is given by Bronstein and
Semendjajew [26] using the following definition

Ψ = −4ac− b2. (35)

For Ψ < 0 the total solution in terms of t = t(h) is

t =
−1
2c

ln (−ch2 − bh + a)− b

2c
√
−Ψ

·

ln
(
−2ch− b−

√
−Ψ

−2ch− b +
√
−Ψ

)
+ C. (36)

To calculate the unknown constant C, the initial condition
h(t → 0) = 0 can be used to give

C =
1
2c

ln (a) +
b

2c
√
−Ψ

ln
(
−b−

√
−Ψ

−b +
√
−Ψ

)
. (37)

Thus the final solution is

t =
1
2c

[
− ln

(
−ch2 − bh + a

a

)]
− b

2c
√
−Ψ

·

ln
[
(−2ch− b−

√
−Ψ)(−b +

√
−Ψ)

(−2ch− b +
√
−Ψ)(−b−

√
−Ψ)

]
. (38)

Dimensional analysis

To compare the experimental data obtained with differ-
ent fluids or under different conditions it is of great interest
to have a set of dimensionless numbers to describe the prob-
lem. We introduce a dimensionless ”capillary height num-
ber” HN relating gravity forces to surface tension forces
and a ”capillary time number” TN relating gravity forces
to viscous and surface tension forces. These numbers are
described in more detail by Fries and Dreyer [20]. The HN
can be regarded as a special form of the Bond number since
it relates gravity forces to surface tension forces, and is de-
fined as

HN = h
b

a
=

hRsρg

2σ cos θ
, (39)

where the TN is defined as

TN = t
b2

a
=

tRsρ
2g2K

2φσµ cos θ
=̂

Bo2

Ca
. (40)

Here the capillary number Ca relates viscous forces to sur-
face tension forces and reads

Ca =
µv

σ
∼ µR

σt
.

However, HN and TN are not able to reflect the influence of
evaporation on the wicking behavior. This can be done by
relating the maximum reachable height with gravity and
evaporation (Eq. (33)) to the maximum reachable height
without evaporation (Eq. (31)). Using this approach a di-
mensionless ”related maximum height” Φ is obtained

Φ =
hmax,a,b,c

hmax,a,b
=

b

a

(
−b

2c
+

√
b2

4c2
+

a

c

)
. (41)

If Φ is equal to zero no height is gained at all, the evapo-
ration effect is so strong that it prevents any capillary rise

(ṁe → ∞). If Φ is equal to one, no evaporation occurs to
restrict the capillary rise (ṁe = 0). For values of Φ in be-
tween, say 0.5, evaporation diminishes the reachable height
to half the value that could be gained without evaporation.
With these parameters we can draw a dimensionless plot of
the numerical solutions of Eq. (26) as shown in Figs. 16 and
17. The numerical solution of Eq. (26) is consistent with
the analytic one (Eq. (38)).

Fig. 16. Dimensionless height over time for different values of Φ. 0.99
hmax line is introduced in the next section.

Fig. 17. Close up of the solution for shorter times.

Time needed to reach 0.99 hmax

For infinite times the gained height converges to a maxi-
mum value hmax. From Figs. 16 and 17 it can be seen that
after a certain time depending on the evaporation rate,
the height reaches a quasi steady state where no further
increase in height occurs. For high evaporation rates (low
values of Φ) this state is reached earlier than for low evap-
oration rates (high values of Φ). This raises the question at
what time the liquid stops rising and reaches 0.99 times its
maximum value hmax. Using numerical methods, namely
a tool written in C++, the dimensionless time TN0.99 is
found. It is defined as that time when 99% of the final height
hmax is reached. TN0.99 depends on the parameter Φ as can
also be seen from the Figs. 16 and 17. A polynomial func-
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tion of fourth order is fitted to the numerically generated
points which gives

TN0.99 = 1.2682Φ4 +0.2157Φ3 +2.122Φ2−0.0102Φ. (42)

The ”0.99 hmax line” in Figs. 16 and 17 refers to the inverted
value Φ0.99(TN0.99) assuming that Φ is equal to HN when
99% of it is reached. Another interesting interpretation of
the steady state line is as follows: If a liquid inside the weave
is on the left hand side of the 0.99 hmax line in the diagram,
it is still rising. If it is on the right hand of the line, it has
already reached its final height hmax and remains static.

Evaluation of the model with experimental data

In this section the evaporation model introduced on the
previous pages shall be compared to the experimental re-
sults obtained with the Dutch-Twilled-Weave 200x1400.
The experiments were either performed by the authors or
Kaya [25]. Figs. 18 and 19 show a comparison of experi-
mental results and predicted values obtained with the pre-
sented model. Hereby the experiments are abbreviated by
the liquid used and numbers as explained in Table 9.

Fig. 18. A dimensionless plot (small TN) of experimental results
(dots) in comparison to the values predicted by the model (lines).

The Φ = 1 line depicts the rise for both liquids with no evaporation.

Fig. 19. A dimensionless plot (large TN) of experimental results
(dots) compared to our model (lines).

From Figs. 18 and 19 it can be seen that in general the
experimental results follow the predicted values. However,

Table 9
Experiments performed using various test liquids.

specimen

width W

chamber

aperture

ṁe

(measured)

Φcalc.

[mm] [mm2] [kg/m2s] [-]

HFE-7500 exp1 16 55 7.097× 10−6 0.740

HFE-7500 exp2 16 2500 4.357× 10−4 0.169

HFE-7500 exp3 18 55 1.808× 10−6 0.902

HFE-7500 exp4 18 2500 4.681× 10−4 0.164

FC-72 exp1 16 55 7.520× 10−5 0.529

FC-87 exp1 16 55 1.657× 10−4 0.494

FC-77 exp1 16 2500 2.006× 10−3 0.098

FC-77 exp2 18 55 4.539× 10−6 0.847

FC-77 exp3 18 2500 1.208× 10−3 0.124

SF 0.65 exp1 16 2500 7.397× 10−4 0.071

SF 0.65 exp2 18 55 4.680× 10−6 0.593

SF 0.65 exp3 18 2500 6.576× 10−4 0.075

there seems to be a trend that the mathematical model
overestimates the height. Table 10 displays the measured
and predicted values of Φ to compare the deviation between
model and experiment. Apparently the calculated values
are larger than the measured ones as was seen from the
comparison of the height curves. The average deviation is
found to be in the range of 20%. There are several parame-
ters which could be the source of these deviations. The con-
tact angle is assumed to be constant which is not correct if
the liquid interface is in motion. However comparison with
models for the dynamic contact angle (e.g. Jiang et al. [27],
based on data by Hoffman [28]) shows that the influence
is negligible for the investigated flow regimes. For exam-
ple using SF 0.65 fluid and a rise rate of 10 mm/s, which
could only be reached within the first ”fast” seconds of the
process, one obtains a capillary number Ca = 3.1 × 10−4

which leads to a cos(θ) deviation of 3.4%. Another point
is neglecting inertia effects which, however, should mainly
be of importance for the very early stages of the capillary
rise. Probably most influential is the assumption of a con-
stant evaporation distribution all over the wet weave. If by
some means the evaporation rate would be higher at the
top of the weave the refill velocity vr(z) would not be a
linear function of z and thus more liquid would have to be
transported to the top. This would lead to a higher pres-
sure loss and may thus explain the discrepancy between
theory and experimental findings. Despite the deviations
the presented evaporation model gives a far better predic-
tion for the capillary rise than solutions neglecting evapora-
tion (e.g. Lucas-Washburn) and explains the experimental
observations qualitatively. Also can be seen that realistic
evaporation rates may have a major impact on the reach-
able wicking height. For example the last experiment shown
in Table 10 (SF 0.65 exp1) has a measured Φ of about 0.06.
This means the liquid reaches only 6% of the height that
would be gained without evaporation!
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Table 10
Experimental values of Φ compared to calculated ones.

Φexp. Φcalc. Φexp./Φcalc.

HFE-7500 exp2 0.12 0.169 71.0 %

FC-72 exp1 0.43 0.529 81.3 %

FC-87 exp1 0.40 0.494 80.9 %

FC-77 exp1 0.059 0.098 60.2 %

SF 0.65 exp1 0.057 0.071 80.3 %

average - - 74.7 %

SUMMARY AND CONCLUSIONS

The wicking behavior of perfectly wetting liquids in
metallic weaves is studied. By means of the momentum
balance the Lucas-Washburn equation and further analyt-
ical solutions are introduced. An experimental setup using
a vertically positioned weave is used to investigate the
wicking behavior of different liquids. The results are com-
pared to analytical solutions and good agreement between
the Lucas-Washburn equation and the experimental data
is found for flow regimes where gravity and evaporation ef-
fects are negligible. From the measurements characteristic
pore parameters can be determined. No significant influ-
ence of the screen width is found on the wicking process.
However, the capillary rise in warp direction occurs about
twice as fast as in weft direction as the permeabilities also
differ by about this factor due to the thicknesses of the
wires and the weave structure. The results for the slope
parameter K/Rs are validated by previous literature, but
there are discrepancies for the static radius which may oc-
cur due to the sensitivity of the experiment to evaporation.
That is why the effect of evaporation is investigated in more
detail and a model is developed to explain the observed
effects. An analytical solution is presented which includes
both gravitational and evaporation effects in dimensionless
form. Using the introduced dimensionless parameters it is
possible to plot all experimental data in a single diagram
to compare different fluids and evaporation rates. The ex-
perimental data supports the theoretical model, although
it shows that the model tends to overestimate the reached
height by about 20%.

ACKNOWLEDGEMENT

The funding of the research project by the German
Federal Ministry of Economics and Technology (BMWi)
through the German Aerospace Center (DLR) under
grant number 50JR0011 and the Deutsche Forschungsge-
meinschaft (DFG) through the Research Training Group
PoreNet is gratefully acknowledged. The authors also like
to acknowledge the support of Spoerl and the work of A.
Kaya.

References

[1] B.N. Antar and V.S. Nuotio-Antar. Fundamentals of Low

Gravity Fluid Dynamics and Heat Transfer, chapter Chapter 9,
pages 265–287. CRC Press, Boca Raton, Florida, 1993.

[2] F.T. Dodge. Low-Gravity Fluid Dynamics and Transport
Phenomena, editor J.N. Koster and R.L. Sani, volume

130, chapter 1, pages 3–14. Aeronautics and Astronautics,

Washington, DC, 1990.

[3] J.R. Rollins, R.K. Grove, and D.E. Jaekle. Twenty-three

years of surface tension propellant management system design,
development, manufacture, test, and operation. In AIAA, editor,

21st Joint Propulsion Conference, pages 1–9. AIAA-85-1199,
1985.

[4] P.Behruzi, G.Netter. Concept analysis of PMD designs for future
upper stages. 54th Int. Astronautical Congress, Bremen, 2003.

[5] C. van Oss, R. Giese, Z. Li, K. Murphy, J. Norris, M. Chaudhury,
and R. Good. Determination of contact angles and pores sizes

of porous media by column and thin layer wicking. J. Adhesion

Sci. Technol., 6(4):413–428, 1992.

[6] A. Siebold, M. Nardin, J. Schultz, A. Walliser, and M. Oppliger.

Effect of dynamic contact angle on capillary rise phenomena.
Colloids and Surfaces A, 161(1):81–87, 2000.

[7] J. Bachmann, S.K. Woche, M.O. Goebel, M.B. Kirkham, and

R. Horton. Extended methodology for determining wetting

properties of porous media. Water Resour. Res., 39(12), 2003.

[8] E. Chibowski and R. Perea-Carpio. Problems of contact angle

and solid surface free energy determination. Advances in colloid
and interface science, 98:245–264, 2002.

[9] R. Lucas. Ueber das Zeitgesetz des kapillaren Aufstiegs von
Flüssigkeiten. Kolloid-Zeitschrift, 23:15–22, 1918.

[10] E.W. Washburn. The dynamics of capillary flow. Physical

Review, 17(3):273–283, 1921.

[11] S. Levine, J. Lowndes, E.J. Watson, and G. Neale. A theory

of capillary rise of a liquid in a vertical cylindrical tube and in

a parallel-plate channel. J. Colloid Interf. Sci., 73(1):136–151,
1980.

[12] A. Marmur. Penetration and displacement in capillary systems
of limited size. Adv. Colloid Interfac., 39:13–33, 1992.

[13] E.P. Symons. Wicking of liquids in screens. NASA TN D-7657,
1974.

[14] N. Fries, K. Odic, and M. Dreyer. Wicking of perfectly wetting

liquids into a metallic mesh. Proceedings of the 2nd International

Conference on Porous Media and its Applications in Science
and Engineering; Kauai, USA, 2007.

[15] M.Stange, M.Dreyer, H.Rath. Capillary driven flow in circular
cylindrical tubes. Phys. Fluids, 15(9):2587–2601, 2003.

[16] M. Stange. Dynamik von Kapillarströmungen in Zylindrischen
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