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Abstract. After a very short review of the principles underlying Special Relativity,
their meaning, and their consequences, we first describe the basic experiments testing
SR in a model–independent way which is the most basic way to describe experiments
testing the foundations of SR. In order to be able to give quantitative estimates of the
validation of SR and, even more important, in order to be able to compare conceptually
different experiments, one introduces test theories. We give a review of test theories
needed for a consistent description of tests of Lorentz Invariance. The main emphasize
is on kinematical test theories of Robertson and Mansouri–Sexl type. Though these
test theories were very important in reaching a new understanding of the experimental
foundation of SR, an extensive discussion shows that are kinematical test theories are
incomplete and, thus, dynamical test theories like the Standard Model Extension are
superior.

1 Introduction

1.1 Postulates of Special Relativity

Special Relativity (SR) is one of the rare examples where essentially everything,
the formalism as well as all physical consequences, can be bases on two postulates
only. These two postulates are

Postulate 1: The speed of light c is constant.
Postulate 2: The relativity principle.

The first postulate may be replaced by a perhaps even more simple one, namely
by the statement that light is a unique phenomenon, that is, between an event
and a worldline there are two and only two light rays. The light ray, in partic-
ular, does not depend on the trajectory the event of the emission point lies on.
Otherwise there will be more than two light rays. The second postulate then
makes sure that the measured velocity of light does not depend on its direction
and on the velocity of the observer.

The two postulates have some immediate consequences which all can be
tested in experiments:

C. Lämmerzahl: Test Theories for Lorentz Invariance, Lect. Notes Phys. 702, 349–384 (2006)
DOI 10.1007/3-540-34523-X 12 c© Springer-Verlag Berlin Heidelberg 2006



350 C. Lämmerzahl

• The velocity of light, c, does not depend on
– the velocity of the source (what is a statement of the uniqueness of the

phenomenon)
– the velocity of the observer,
– the direction of propagation,
– the polarization or frequency of the light ray.

• The relativity principle implies that
– the limiting velocity of all particles is the speed of light

c = c+ = c− = cν = vmax
p = vmax

e = vgrav

(otherwise there is a preferred frame in contradiction to the second pos-
tulate), with the consequence that

– c is universal and, thus, can be interpreted as geometry,
– that all physics is the same in all inertial systems, that is, experimental

results do not depend on the
· orientation of the laboratory and
· on the velocity of the laboratory.

The experimental status of the foundations of SR has been reviewed recently
in [1–3] and a description of technological applications of SR can be found in [4].

1.2 The Consequences

From the above postulates one can derive the Lorentz transformations

t′ =
1√

1 − v2
(t− x · v) (1)

x′ = x⊥ +
1√

1 − v2

(
v‖ − vt

)
, (2)

where x‖ = x · v/v2 and x⊥ = x − x‖. These transformations lead to the
following effects

1. time dilation,
2. twin paradox,
3. Doppler effect,
4. length contraction,
5. addition of velocities,
6. Sagnac effect, and
7. Thomas precession.

All these effects except length contraction have been confirmed in experiments
with high accuracy.
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1.3 The Ether

One consequence of the Galilei–transformations is the addition of velocities: If a
body moves with velocity u with respect to an inertial system S, then another
inertial system S′ moving with −v with respect to S observes the body with a
velocity

u′ = u + v . (3)

This applies to all velocities, in particular to the speed of light. That frame in
which the speed of light is isotropic and is what appears in Maxwell’s equations,
is called the ether frame.

If c is the speed of light in the ether frame, then in a frame moving with
respect to the ether the velocity of light is c′ = c + v with an orientation and
velocity–dependent modulus

c′(θ, v) =
√

c2 + v2 + 2cv cos θ

≈ c

(
1 +

v

c
cos θ +

1
2
v2

c2
(1 + 3 cos θ)

)
+ O(v4/c4) , (4)

where θ = �(c,v). This orientation dependence was looked for in the Michelson–
Morley experiments.

2 Test Theories

2.1 What are Test Theories?

Test theories are parametrized generalizations or “violations” of theories under
consideration. Calculations of experiments using these generalized theories lead
to a variety of effects which are absent in the ordinary theory. A comparison of the
calculated effects with experimental results leads to estimates of the parameters
characterizing the violation of the theory. One main aspect is that only one
generalized theory is taken in order to describe all possible effects.

Consequently, tests theories have the following advantages and tasks

1. Parametrization and identification of possible violation.
2. Quantification of degree of validity.
3. Different (!) experiments can be compared.

In particular the last point is important since in principle different tests may
need different theories. For example, while the Michelson–Morley experiment
examines the outcome of an interference experiment during a change of the
orientation of the apparatus, the Kennedy–Thorndike experiments examines the
same for a change in the velocity of the apparatus. Both situations are different
and have nothing to do with one another. Only within tests theories both possible
results can be described by a (different) combination of one set of parameters.

Different test theories contain a different number of parameters characterizing
the deviation from the standard theory. Accordingly, for different test theories
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one needs a different number of independent tests in order to verify within the
experimental limits the theory under consideration. Each test theory defines
itself the experiments needed for that.

The quality or richness of a test theory depends on the number of parame-
ters. More parameters can describe a wider range of hypothetical effects and
therefore a more complete characterization or verification of the theory under
consideration is possible. However, in some cases it is preferable to restrict to a
small set of parameters in order to focus on distinguished features. Examples of
this are the Robertson test theory or the c2 formalism [5, 6] which is a special
case of the THεµ–formalism [7] and which is equivalent a one–parameter subset
of the Standard Model Extension, see Table 1. The fully parametrized Standard
Model Extension is rather cumbersome to treat. It is obvious that one needs as
many independent tests as there are parameters which have to be determined.
In the c2 formalism only one test is needed; for the RMS theory we need three
tests and for the SME one needs at the end more than 100 tests. One of the
theoretical tasks is to find out that tests which may yield the best estimate for
the parameters under consideration.

Beside the reasons mentioned above, test theories also play the role to medi-
ate between the experimental results and a full theory of, e.g., quantum gravity,
see Fig. 1.

There are two classes of test theories for SR, a kinematical and a dynamical.
Kinematical test theories have been worked out by Robertson [8] and by Man-
souri and Sexl [9], dynamical test theories are the THεµ–Formalism [7, 10], the
Extended Standard Model [11] or even more general setups [12].

2.2 Kinematical Test Theories

Kinematical tests theories discuss the transformation between inertial frames
moving with different velocities. At first, these transformation possess the gen-
eral structure x′a = fab(v)xb, where v is the relative velocity between the two
frames. Each kinematical test theory considers a certain class of these general
transformations. These transformations are used in order to describe experi-
ments in different frames which, in general, may depend on v. The kinematical
test theory of Robertson and Mansouri and Sexl were a very important step for
the understanding of the structure of SR. Within this test theory the three fa-
mous classical experiments of Michelson–Morley, Kennedy–Thorndike, and Ives

Table 1. Test theories and their number of parameters. In the SME n = number of
different elementary particles like electrons, protons, neutrons, etc.

Test Theory Number of Parameters

c2–formalism 1 parameter
Robertson–Mansouri–Sexl 3 parameters
χ− g–formalism 19 parameter
Extended Standard Model 19 + n48 parameter
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Experiment
Observation

Phenomenology
Test theory

⊂

Effective
theory

Full
theory

Clock readout
Interference fringes

acceleration
. . .

Standard Model Extension
PPN formalism
c2–formalism

Robertson–Mansouri–Sexl
THεµ–formalism
χ− g–formalism

. . .

Dilaton scenarios
Axion fields

Torsion
. . .

Quantum Gravity

Test theories
mediate between

experiment and full theory

derived

Fig. 1. The hierarchy of descriptions of the physical world. The effective theories are
a subset of the phenomenological theories

and Stilwell are identified which are needed in order to verify SR. For dynamical
test theories this classification turns out to be not sufficient, in particular since
only the behavior of light is considered.

2.3 Dynamical Test Theories

Dynamical test theories start with generalized equations of motion which are
used in order to describe experiments. This means that generalized equations
of motion for the present standard model are needed, in particular general-
ized Maxwell and Dirac equations. There are of course infinitely many ways to
generalize equations. However, for each kind of phenomenon related to the vi-
olation of one of the principles underlying SR, one can begin with very simple
modifications. Starting from the standard Maxwell and Dirac equations these
modifications in the following (5) and (5) may consist of introducing

• terms χµρνσ, M , and Xab violating Lorentz invariance (see the contribution
of R. Bluhm in this volume),

• terms χµρσ violating charge non–conservation [12] which also violate Lorentz
invariance,

• higher derivatives which in general also violate Lorentz invariance,
• non–linearities.

These modifications then yield the generalized Maxwell and Dirac equations
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4πjµ = ηµρηνσ∂νFρσ + χµρνσ∂νFρσ + χµρσFρσ

+χµρνστ∂ν∂τFρσ + . . . + ζµρστνFρσFτν + . . . (5)
0 = iγaDaψ + mψ + Mψ + γabDaDbψ + . . . + N(ψ)ψ (6)

where Da = ∂a − ieAa and

γaγb + γbγa = 2ηab + Xab . (7)

The possible effects which can be derived from the above generalized equations
are

• Birefringence
• Anisotropic speed of light
• Anisotropy in quantum fields
• Charge non-conservation
• Anomalous dispersion
• Decoherence, space-time fluctuations
• Modified interference
• Non-localities

In general, as in the Standard Model Extension, for example, the parameters are
assumed to be constant.

In this contribution we in extenso treat the kinematical test theories, make
some remarks on dynamical test theories and, finally, present a comparison be-
tween these test theories.

3 Model-Independent Descriptions of LI Tests

Before we enter the description of the tests of LI in terms of kinematical tests the-
ories, we describe them in a model independent way. Here “model independent”
means that we do not assume anything related to the space-time geometry. We
of course employ models related to wave propagation, resonators, etc. which –
and we like to emphasize this once more – do not anticipate any results on the
Lorentzian structure of space–time.

3.1 Isotropy of the Speed of Light

There are two main experimental schemes for testing the isotropy of the speed
of light: rotating Michelson interferometers and rotating resonators. We describe
both.

Interference Experiments

The Setup

The setup of the experiment by Michelson and Morley [13] uses a Michelson
interferometer mounted on a turn table, see Fig. 2. Light from a source is split
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light source

mirror 2

mirror 1

beam
splitter

detector

turn table

lI

lII

Fig. 2. Setup of the Michelson–Morley experiment. A Michelson interferometer is
mounted on a turn table. One looks for a variation of the intensity for varying orien-
tation

coherently and propagates along two different directions. After reflection by mir-
rors the light rays recombine and interfere. The intensity of the interfering light
rays is observed in the detector.

Model Independent Description

We assume the interferometer is in the x − y–plane. The incoming light ray is
described by a plane wave1 with frequency ω ei(kx−ωt). The two split light waves
are given by ei(k1,2±x−ωt), where k1+ is the wave vector of the wave propagating
from the beam splitter to the mirrors, and k1,2− is the wave vector of the reflected
waves. Stationarity requires a unique frequency.

The intensity of the interfering waves is

I =
1
2

∣
∣
∣ei(k1+l1+k1−l1+ωt) + ei(k2+l2+k2−l2+ωt)

∣
∣
∣
2

, (8)

where l1 and l2 are the lengths of the interferometer arms. We use the dispersion
relations2 ω = k1± c1± and ω = k2± c2±, where c1+ and c2+ are the velocities
1 Here we assume that light can be described by a plane wave. This assumption is

independent from any results concerning Lorentz invariance.
2 Dispersion relations are a consequence of dynamical equations like the wave equation

if one discusses plane wave solutions.
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of light (phase velocity) propagating from the beam splitter to the mirrors and
c1− and c2− the corresponding velocities in opposite direction, and obtain

I =
1
2

∣
∣
∣
∣e
iω
(

l1
c1+

+
l1

c1−
−t
)

+ e
iω
(

l2
c2+

+
l2

c2−
−t
) ∣∣
∣
∣

2

=
1
2

[
1 + cos

(
2ωl2
c2

− 2ωl1
c1

)]
.

(9)
Here c1 and c2 are the synchronization independent two-way velocities

2
c1,2

=
1

c1,2+
+

1
c1,2−

(10)

along the two interferometer arms. The observable phase shift is

∆φ = ω

(
2l2
c2

− 2l1
c1

)
, (11)

We assume a small variation of the speed of light, c1,2 = c+ δc1,2 with δc1,2 ( c
and obtain

∆φ = 2ω
(
l2 − l1

c
+

l1
c

δc1
c

− l2
c

δc2
c

)
. (12)

The variation δc1,2 may depend on the orientation θ of the interferometer. Since
the interferometer arms are orthogonal, δc2 = δc(θ) and δc1 = δc(θ + π

2 ). Then

∆φ(θ) = 2ω
(
l2 − l1

c
+

l1
c

δc(θ + π
2 )

c
− l2

c

δc(θ)
c

)
. (13)

Upon rotating the interferometer an orientation dependent speed of light yields
the phase shift

δ∆φ(θ) = 2ω
(
l1
c

δc(θ + π
2 )

c
− l2

c

δc(θ)
c

)
l2=l2= 2

ωl

c

(
δc(θ + π

2 )
c

− δc(θ)
c

)
, (14)

where in the last step we also assumed an equal arm interferometer.
In the derivation we assumed that the speed of light might depend on the

orientation. It can already be seen from (11) that an orientation dependent
arm length give the same effect. Operationally one cannot distinguish between a
variation of the speed of light and the a variation of the arm length. What can be
observed is the difference in the changes. In fact, in dynamical approaches both
has to be taken into account [14]. This also means that in experiments the length
of the interferometer has to be controlled very carefully. Any thermal change of
the length may simulate a varying speed of light. It is a general agreement to
formally assigning any result to the speed of light, that is, we define the length
of the interferometer arm as constant provided any external influence has been
ruled out (what sometimes is subject to some debates as, e.g., in the case of the
Miller experiment [15]).

In the case δc(θ) = δc cos θ we obtain
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x

l

A

B B′

A′

ϑ

Fig. 3. The paths of light in an interferometer arm moving to the right in an ether
frame. The angle between the velocity of the interferometer with respect to the ether
and the orientation of the interferometer arm is ϑ

δφ(θ) = −2ω
l

c
(sin θ + cos θ)

δc

c
=

2lω
c

√
2 sin(θ + π

4 )
δc

c
. (15)

This is the expected phase shift for δc �= 0. If no phase shift is observed, then
δc = 0 within the accuracy of the interferometer. (For an interferometer with
orthogonal arms a variation δc(θ) = δc cos(4nθ), n ∈ N, cannot be detected.)

Interpretation within the Ether Theory

In the ether frame the calculation of the time t(ϑ, v) light needs to propagate
from the beam splitter to one mirror and back to the beam splitter immediately
yields from Fig. 3

t(l, ϑ) =
2lc

c2 − v2

√

1 − v2

c2
(1 − cos2 ϑ) . (16)

where ϑ is the angle between the interferometer arm and v. The difference of
the time for light moving along two orthogonal interferometer arms is ∆t =
t(l, ϑ) − t(l, ϑ + π/2). This gives the phase shift

∆φ =
2lω
c

1
1 − v2

c2

(√

1 − v2

c2
(1 − cos2 ϑ) −

√

1 − v2

c2
(
1 − sin2 ϑ

)
)

(17)

=
2lω
c

v2

c2
(
cos2 ϑ− sin2 ϑ

)
=

2lω
c

v2

c2
cos(2ϑ) . (18)

The same result comes out when we perform the calculation in the frame of the
interferometer and make use of the speed of light given by (4).

For an interferometer with an arm length of 11 m as used by Michelson and
Morley, and a wavelength of 550 nm one obtains a phase shift of ∆φ = 0.8π if
one uses the velocity of approx. 30 km/s of the Earth around the Sun. Today one
would have taken the velocity of the Earth of approx. 360 km/s with respect to
the cosmological background which is one order of magnitude larger and, thus,
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yields a phase shift of approx 10π. The sensitivity of the original Michelson–
Morley interferometer was ∆φ ∼ 0.01π so that this effect should be measurable.
However, nothing has been seen which means that v ≤ 8 km/s.

This null result has been explained by a drag of the ether. Another hypoth-
esis was the length contraction suggested by Lorentz and FitzGerald. Since this
contraction should be universal, experiments have been carried through with
different materials for the interferometer arms [16,17].

A comparison of the phase shifts gives a relation of velocity of the motion of
the reference frame with respect a hypothetical ether to the orientation depen-
dent variation of the speed of light

v2

c2
=

√
2
δθc

c
. (19)

Experiments with Resonators

The Setup

In 1955 Essen for the first time used (microwave–) resonators instead of interfer-
ometers in order to search for an anisotropic speed of light [18], see Fig. 4. The
frequency of a standing electromagnetic wave inside the resonator is determined
by the length of the resonator and the speed of light. This frequency can be
measured. A varying frequency during turning around the resonator signals an

ϑ

turn tableresonator

frequency
measurement

Fig. 4. The principal setup for a test of the isotropy of light using resonators. The
frequency of electromagnetic radiation inside the resonators is given by the ratio of
the speed of light and the length of the resonator. A change of the frequency during
a change of the resonators implies that either the speed of light or the length of the
resonator changes with orientation
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orientation dependent speed of light (or an orientation dependent length of the
resonator). In a modified setup one can use two orthogonally oriented resonators
what resembles the Michelson–Morley setup.

Why resonators? Experiments with resonators are much more precise than experi-
ments using interferometers. There are two main reasons: (i) The high finesse (quality
factor) of the resonator which today is of the order 105 to 106. This means that a pho-
ton can travel 105 to 106 times back and forth between the mirrors before leaving the
resonator. Therefore, the effective optical path length is much longer than in interfer-
ometers. Therefore, a photon can accumulate much more information on an anisotropic
speed ob light than in interferometers. For a resonator of 10 cm this amounts to 10
to 100 km compared to 10 m arm length of a typical interferometer. (ii) Resonators
are much smaller than interferometers so that much better temperature, vibration,
etc. control can be applied. These two reasons lead to the present accuracy of these
devices. As an illustration: the distance between the two mirrors can be controlled to
up to 1/100 of a proton radius.

Model Independent Description

We have to determine the frequency of the standing electromagnetic wave inside
the resonator. This wave consists of two parts traveling back and forth

ϕ = Ae−i(ω+t−k+x) + Be−i(ω−t+k−x) . (20)

For a stationary problem we have ω = ω+ = ω−. Again we use the dispersion
relation ω = k±c± (see footnote on page 355). The velocities of light c± may
depend on the orientation related to the orientation of the resonator. Then

ϕ = Ae
−iω

(
t− x

c+

)

+ Be
−iω

(
t+ x

c−

)

. (21)

The amplitudes A and B have to be determined using the ordinary boundary
conditions ϕ(0) = 0 and ϕ(L) = 0. The first condition yields B = −A so that

ϕ = Ae−iωt
(
e
iω x

c+ − e
−iω x

c−

)
. (22)

The boundary condition at x = L

0 = e
iω L

c+ − e
−iω L

c− (23)

is fulfilled if

sin
(
ω

(
1
c+

+
1
c−

)
L

2

)
= 0 , (24)

or, equivalently,
ω

c
=

nπ

L
, n ∈ N (25)

with the two-way velocity c. This corresponds to a frequency

ν(θ) =
n

2L
c(θ) , (26)
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where we assumed an orientation dependent two-way speed of light. While turn-
ing the resonator on a turn table the frequency of the outcoupled electromagnetic
wave is compared with a stationary mounted frequency standard.

In the case of two orthogonally oriented resonators one can observe the beat
frequency

ν(θ + π
2 ) − ν(θ) =

n

2L
(
c(θ + π

2 ) − c(θ)
)
. (27)

For c(θ) = c + δc cos θ this yields

ν(θ + π
2 ) − ν(θ) = − n

2L
(sin θ + cos θ)δc , (28)

which reproduces (12).

Interpretation within the Ether Theory

We can use the above calculations and just replace the speed of light by its value
(4) given within ether theory, that is, we use

c+ = c′(θ, v) and c− = c′(θ + π, v) (29)

and obtain for the observed frequency

ν(θ′, v) =
nc

2L
1 − v2

c2√
1 − v2

c2 (1 − cos2 ϑ′)
≈ nc

L

(
1 − 1

2
v2

c2
(
1 + cos2 ϑ′)

)
, (30)

what corresponds to the time light needs to propagate back and forth an inter-
ferometer arm. Comparison with the model independent calculation again gives
a relation between the velocity with respect to the ether and the orientation
dependence of the velocity of light

1
2
v2

c2
=

δc

c
. (31)

For two orthogonally oriented resonators we obtain from (30) for the beat
frequency

ν(θ′ + π
2 , v) − ν(θ′, v) =

nc

2L
1 − v2

c2√
1 − v2

c2 (1 − sin2 θ′)
− nc

2L
1 − v2

c2√
1 − v2

c2 (1 − cos2 ϑ′)

=
nc

4L
v2

c2
cos(2ϑ′) + O(v4/c4) , (32)

which is sensitive to the same quantity as interference experiments. In this case
the comparison with the model independent calculation gives

1
2
v2

c2
=

√
2
δc

c
. (33)
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3.2 Constancy of Speed of Light

This class of experiments explore whether the outcome of experiments depends,
via a velocity-dependent speed of light, on the velocity of the laboratory. As for
the isotropy, this has been tested with interferometers as well as with resonators.

Interference Experiments

The Setup

The setup is essentially the same as for the Michelson–Morley experiment. The
only difference is that we need unequal interferometer arm lengths, see Fig. 5.
In the course of the experiment one varies the state of motion (velocity) of the
apparatus and looks for associated variations in the intensity of the interfering
light rays. For simplicity, we assume the interferometer arms do be orthogonal.

Model Independent Description

The intensity for an unequal arm Michelson interferometer has been given in (12).
Now we assume that the speed of light may possibly depend on the velocity of the
apparatus, too. The velocity is measured with respect to some inertial system.
The result will not depend on the choice of this system.

We assume that δc may depend on the state of motion, too

δc1 = δc(θ, v), δc2 = δc(θ + π
2 , v) . (34)

light source

mirror 2

mirror 1

beam
splitter

detector

l1

l2

v

Fig. 5. The experiment of Kenndy and Thorndike uses a Michelson interferometer
with different arm lengths l1 �= l2
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Then (12) yields

∆φ(θ, v) = ω

(
l1 − l2

c
+

l2
c

δc(θ + π
2 , v)

c
− l1

c

δc(θ, v)
c

)
. (35)

In the case that the speed of light does not depend on the direction this simplifies

∆φ(v) = ω
∆l

c

(
1 +

δc(v)
c

)
, (36)

where ∆l = l1 − l2. Therefore, a velocity dependence of the speed of light can
be detected only if the interferometer arms are of unequal length.

What has been searched for in this type of experiments is the variation of
the intensity while varying the velocity,

δ∆φ = ∆φ(v + δv) −∆φ(v) = ω
∆l

c

δc(v + δv) − δc(v)
c

= ω
ly − lx

c

δvc

c
. (37)

Interpretation within the Ether Theory

The same calculation as for the Michelson–Morley experiment gives for an in-
terferometer with unequal arm lengths l1 �= l2 the phase shift

∆φ =
2ω
c

1
1 − v2

c2

(

l1

√

1 − v2

c2
(1 − cos2 ϑ) − l2

√

1 − v2

c2
(
1 − sin2 ϑ

)
)

(38)

=
2ω
c

(
l1 − l2 +

v2

c2
1
2
(
l1 − l2 + l1 cos2 ϑ− l2 sin2 ϑ

)
)

+ O(v4/c4) . (39)

A change in the velocity with respect to the ether should result in a phase shift.
(This is also the case for Michelson–Morley experiments, but there the velocity
term is connected with the orientation which obscures a unique interpretation.
Here the effect is related to a different arm length.) For a change of the velocity
v → v + δv we obtain from (39) to first order in the variation δv

δφ =
2ω
c

v · δv
c2

(
l1 − l2 + l1 cos2 ϑ− l2 sin2 ϑ

)
. (40)

For a given δv and a measured phase shift δφ one can conclude the value of v.
The larger the variation of the velocity, the better estimates will be.

A comparison with the model independent calculation gives

δvc

c
= 2

v

c

δv

c
. (41)

Experiments with Resonators

The Setup

The setup is the same as described above. The only difference is that the setup
will not be rotated but will change its state of motion. While changing the
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velocity of he setup, one looks for a change of the frequency of the outcoupled
electromagnetic wave. The variation of the state of motion of the laboratory is
provided by the rotation of the Earth or its motion around the sun. For using
the latter one has to use long term stable resonators.

Here we have to add an important remark of caution. The measurement of
the frequency consists of a comparison of two frequencies, one frequency is given
by the outcoupled wave, the other by some frequency standard. The frequency
standard is defined by some atomic or molecular transition, for example. In
principle, the frequency standard may also depend on its state of motion. This
means that the present experiment explores whether two frequency standards,
one given by the resonator, the other given by some atom or molecular transition,
depend in the same or in a different way on the state of motion. In any case,
as above any change of the measured frequency is, by convention, assigned to a
change of the velocity of the light. Any definite statement regarding the ‘true’
cause of a (hypothetical) dependence of the signal from the state of motion can
be made only by using a dynamical theory.

Model Independent Description

The frequency of the electromagnetic wave in the resonator is again given by
(26) with the only modification that now the speed of light may depend on the
state of motion of the apparatus, too, c = c(θ, v). Then

ν(v, θ) =
n

2L
c(θ, v) . (42)

A variation of the state of motion shows up in a variation of the measured
frequency,

δν = ν(v+δv, θ)−ν(v, θ) =
n

2L
(c(v + δv, θ) − c(v, θ)) = ν(v, θ)

δvc(v, θ)
c

. (43)

If no effect can be seen then δvc = 0 within limits given by the accuracy of the
apparatus. Also in this case one cannot distinguish a variation of the speed of
light from a velocity dependent variation of the length of the resonator.

Interpretation within the Ether Theory

A change of the velocity results with (30) in the frequency shift

δν = ν(θ′, v + δv) − ν(θ′, v)

=
nc

2L
1 − (v+δv)2

c2√
1 − (v+δv)2

c2 (1 − cos2 ϑ′)
− nc

2L
1 − v2

c2√
1 − v2

c2 (1 − cos2 ϑ′)

≈ nc

L

v · δv
c2

(
1 + cos2 ϑ′) , (44)

and a comparison with the model independent calculation gives

δvν

ν
=

δvc

c
=

v · δv
c2

. (45)
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4 The General Frame for Kinematical Test Theories

4.1 The Setting

In our kinematical test theory the consequences of transformations

t′ = t′(t,x) , x′ = x′(t,x) (46)

between the time and spatial coordinates of two observers are analyzed. On
physical grounds we restrict to transformations which obey the following three
requirements: The transformation

1. maps a force-free motion into a force-free motion, that is,

d2x

dt2
= 0 ⇔ d2x′

dt′2
= 0 , (47)

2. is a one-to-one mapping, and
3. the mapping depends on the relative velocity between the two observers only.

The first requirement implies a projective transformation [19] which with the
second requirement gives the linearity of the transformation. From the third
requirement we conclude that the linear transformation must have the particular
structure

t′ = a(v)t + e(v)v · x (48)

x′ = d(v)x + b(v)
v(v · x)

v2
+ f(v)vt , (49)

with undetermined function a(v), b(v), d(v), e(v), and f(v). One function can be
fixed by specifying the relative velocity between the observers and one function
is related to the synchronization. Only three functions are of true physical nature
and are related to the outcome of experiments.

The essential assumption now is that there exist a preferred frame Σ with
coordinates X and T . In this frame light it assumed to propagate isotropically

ds2 = dT 2 − dX2 − dY 2 − dZ2 = 0 , (50)

Usually, this preferred frame is identified with the cosmological frame in which
the microwave background radiation is isotropic.

4.2 The General Transformation

The transformation between the preferred frame and another frame S with co-
ordinates (t′,x) is described through (48,49)

t′ = a(v)T + e(v)v · X (51)

x = d(v)X + b(v)
v(v · X)

v2
+ f(v)vT . (52)
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The velocity v between S and Σ is defined by the trajectory of the origin of S
with respect to Σ, that is, x = 0 is given by X = vT . That means

f(v) = −b(v) − d(v) . (53)

Then we obtain the transformation

T =
1

a(v)
(t′ − e(v)v · x) (54)

X =
1

d(v)
x −

(
1

d(v)
− 1

b(v)

)
v(v · x)

v2
− v

a(v)
(t′ − ve(v)(v · x)) . (55)

We have the freedom to introduce in S′ another synchronization through t =
t′ + ε′ ·x. The coordinates in the corresponding system S are denoted by (t,x).
As a result, we obtain the transformations between Σ and S with arbitrary
synchronization

T =
1

a(v)
(t− ε · x) (56)

X =
1

d(v)
x −

(
1

d(v)
− 1

b(v)

)
v(v · x)

v2
− 1

a(v)
v(ε · x) +

1
a(v)

vt , (57)

where
ε := e(v)

v

v
+ ε′ . (58)

The line element in S comes out as

T 2 − X2 =
1 − v2

a2
t2 − 2

(
1 − v2

a2
ε +

1
ab

v

)
· x t (59)

−x2

d2
+

1 − v2

a2
(ε · x)2 +

2
ab

(v · x)(ε · x) +
(

1
d2

− 1
b2

)
(v · x)2

v2
.

The light cone in S is defined by the vanishing of (59). We denote by θ
the angle between the direction of light propagation and v and by θ′ the angle
between the speed of light and ε. Then in S the modulus of the speed of light

c(θ, v, ε) =
|x|
t

= (60)

bd(1 − v2)
adv cos θ + bdε(1 − v2) cos θ′ − a

√
b2(1 − v2) + (d2 − b2(1 − v2)) cos θ

depends on the direction, on the velocity of the observer system and on the
synchronization. This velocity will be used to describe the Michelson–Morley,
Kennedy–Thorndike, and Ives-Stilwell experiments.

For later use we note

lim
v→0

a(v) = 1 , lim
v→0

b(v) = 1 , lim
v→0

d(v) = 1 , lim
v→0

ε(v) = 0 , (61)
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what can be inferred from the property t → T and x → X for v → 0 in (56)
and (56).

Special Relativity with arbitrary synchronization is characterized by

a(v) =
√

1 − v2 , d(v) = 1 , b(v) =
1√

1 − v2
, (62)

and for standard Einstein synchronization we have in addition

ε = v . (63)

Then (56,57) give the Lorentz–transformations

T =
1√

1 − v2
(t + v · x) (64)

X = x⊥ +
1√

1 − v2

(
x‖ + vt

)
. (65)

4.3 Addition of Velocities

For the description of clock transport and the time dilation effects we need the
addition of velocities in our general frame. We have three systems Σ, S and S′

with corresponding relative velocities

S(t,x)

Σ(T,X) S′(t′,x′)

v u

v′
(66)

The task is to represent v′ as function of v and u.
For that we insert x′ = 0 into the transformation Σ → S′, and x = ut into

the transformation Σ → S. Elimination of T and X gives

1
a(v′)

t′ =
1

a(v)
(t− ε · ut) (67)

1
a(v′)

v′t′ =
1

d(v)
ut−

(
1

d(v)
− 1

b(v)

)
v(v · ut)

v2
− 1

a(v)
v(ε · ut) +

1
a(v)

vt (68)

which yields

v′ = v +

a(v)
d(v)

u⊥ +
a(v)
b(v)

u‖

1 − ε · u . (69)

For the choice (62) of the parameters we obtain the special relativistic expression.
For small velocities u,

v′ ≈ v +
a(v)
d(v)

u −
(
a(v)
d(v)

− a(v)
b(v)

)
v(v · u)

v2
. (70)
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5 The Test Theory of Robertson

The test theory of Robertson [8] now specializes the above formalism to the spe-
cial case of Einstein synchronization. The resulting theory is physically equiva-
lent to the original one.

5.1 The Einstein–synchronization

In order to determine the coefficient ε for the Einstein–synchronization we con-
sider two clocks A and B which are at rest in a system S. This system S moves
with a velocity v with respect to Σ. At t = 0, a signal is sent from A an arrives
in B at t = t1. This signal will be sent back immediately and reaches A at t2,
see Fig. 6. Einstein synchronization now requires (compare, e.g., [9])

t2 = 2 t1 . (71)

According to the diagram (66) and the relations (56,57) we represent the events
E1 and E2 in the relations between S and Σ as well as in the relations between
S′ and Σ. Since the clock A is at rest in the moving system S, we have x2 = 0
and X2 = vT2. Therefore,

T

X

clock A

clock B

t1

t2E2

E1

Fig. 6. The Einstein–synchronization: A and B are worldlines of two clocks at rest in
a system which moves with respect to Σ. At t = 0, the observer A sends a light signal
to B, where it arrives at time t1. The signal sent back immediately arrives in A at time
t2. The Einstein–synchronization now requires t1 = 1

2
t2
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T2 =
1

a(v)
t2 X2 = vT2 . (72)

From the equations for light propagation

|X1|2 = T 2
1 , |X2 − X1|2 = (T2 − T1)2 , (73)

we then obtain after some calculations

ε = −v
a(v)

b(v)(1 − v2)
. (74)

Using this condition we obtain for our transformations (56,57)

T =
1

a(v)

(
t +

a(v)
b(v)(1 − v2)

v · x
)

(75)

X =
1

d(v)
x⊥ +

1
b(v)(1 − v2)

x2
‖ +

1
a(v)

vt , (76)

where x⊥ = x − x‖ with x‖ =
v · x
v2

v. The line element S will be

T 2 − X2 =
1 − v2

a2(v)
t2 − 1

d2(v)
x2
⊥ − 1

b2(v) (1 − v2)
x2
‖ (77)

which has the structure

ds2 = g2
0(v)t2 −

(
g2
1(v)dx2

‖ + g2
2(v)dx2

⊥

)
(78)

with

g2
0(v) =

1 − v2

a2(v)
, g2

1(v) =
1

b2(v)(1 − v2)
, g2

2(v) =
1

d2(v)
. (79)

This is (59) in the case of the Einstein–synchronization. The measurements of
length depend on the velocity of the frame which violates the relativity principle.
For SR g0(v) = g1(v) = g2(v) = 1 for all v.

The speed of light is

c(θ, v) =
1

B(v)
1

√
1 + A2(v) cos2 θ

, (80)

where we defined the modulus 1/B(v) and the anisotropy A(v)

1
B(v)

=
d(v)

√
1 − v2

a(v)
=

g0(v)
g2(v)

(81)

A(v) =
d(v)

b(v)
√

1 − v2
− 1 =

√
g2
1(v) − g2

2(v)
g2(v)

. (82)

In the subspace orthogonal to v the speed of light is isotropic. The relative veloc-
ity v defines a preferred direction. The function a(v) is not related to a possible
anisotropy of c. If we define the speed of light in direction of and orthogonal to v
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c‖(v) = c(0, v) =
b(v)(1 − v2)

a(v)
=

√
1 − v2

A(v)
(83)

c⊥(v) = c(π2 , v) =
1

a(v)
d(v)

√
1 − v2 =

1
B(v)

(84)

then

c(θ, v) =
c⊥(v)

√
1 +

c2⊥(v)−c2‖(v)

c2‖(v)
cos2 θ

. (85)

Therefore the anisotropy is given by the relative difference of c‖ and c⊥.
Using c‖ and c⊥ we also can express the transformations (56,57)

T =
1

a(v)
(t− ε · x) (86)

X =
√

1 − v2

a(v)

(
x⊥
c⊥

+
√

1 − v2

c‖
x‖ −

v (t− ε · x)√
1 − v2

)

=
√

1 − v2

a(v)

(
B(v)x⊥ + A(v)x‖ −

v (t− ε · x)√
1 − v2

)
, (87)

and the line element (59)

T 2 − X2 =
1 − v2

a2(v)

(
t2 − 2

(
ε +

v

c‖

)
· x t− 1

c2⊥
x2

+
((

ε +
v

c‖

)
· x
)2

+

(
1
c2⊥

− 1
c2‖

)
(v · x)2

v2

)

. (88)

Here we like to add some remarks on other synchronizations. We show (i) that the
synchronization by slow-clock transport yields a different ε and (ii) that the requirement
of coincidence of Einstein with slow-clock transport synchronization is only possible
for a(v) =

√
1 − v2 [9].

For slow–clock synchronization we consider a clock moving with a small velocity
with respect to the system S. By passing the clocks at rest in S, these clocks will be
given the time of the slowly moving clock, see Fig. 7. Since the moving clocks are at
rest in S′ we have T = t′/a(v′). The same clocks is described in S by T = (t− ε · x)t.
The prescription of synchronization by slow clock transport now is t′ = t from which
we immediately obtain ε · x = (a(v) − a(v′))T .

Furthermore, from X = v′T in (57) and the addition of velocities (70) for small u
we obtain a(v)(v · u)T = v · x. Then

ε · x = − 1

a(v)

(
a(v′) − a(v)

) v · x
u · v

≈ − 1

a(v)

(
(v′ − v) · ∇va(v)

) v · x
u · v

= − 1

b(v)

1

v

da(v)

dv
v · x , (89)
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t

x

clock A

clock 1
clock 2

clock 3
clock 4

clock 5

Fig. 7. Synchronization by using slow clocks: a clock A moves slowly in S and sets all
clocks in S at its own time

where we again used (70) for small u. Since this should hold for all x we obtain for the
synchronization parameter

ε =
1

b(v)

da(v)

dv

v

v
. (90)

This is different from the result (74) for the Einstein synchronization.
If we require that both methods of synchronization should lead to the same syn-

chronization parameter
da(v)

dv
= − v

(1 − v2)
a(v) , (91)

we obtain, after integration,

a(v) =
√

1 − v2 . (92)

This is the ordinary time dilation factor. Only in this case both synchronization schemes
coincide [9].

5.2 Discussion of the Experiments

Based on (78) we discuss the three classes of experiments, namely the experi-
ments testing the isotropy of the speed of light (Michelson–Morley-experiments),
the experiments testing the independence of the speed of light from the veloc-
ity of the apparatus (Kennedy–Thorndike-experiments) and the experiments
measuring the time dilatation in terms of the Doppler effect (Ives–Stilwell–
experiments). These three experiments together imply the Lorentz–transformat-
ions and, thus, Lorentz invariance.
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Isotropy of the Speed of Light

For a Michelson–Morley experiment with interferometer arms of equal length l
the general phase shift (11) with (80) yields

δφ = 2ωl

(
1
c2

− 1
c1

)
= 2

ωl

B(v)

(√
1 + A(v) sin2 θ −

√
1 + A(v) cos2 θ

)
. (93)

This is independent from the orientation only if the anisotropy A(v) vanishes,

A(v) = 0 ⇔ g1(v) = g2(v) ⇔ d(v) = b(v)
√

1 − v2 (94)

The effect does not depend on the time dilation factor g0. As a consequence the
speed of light (80) reduces to

c(θ, v) = c(v) = 1/B(v) , (95)

what still may depend on v. In principle, these experiments have to carried
through for all v.

For the description of experiments with resonators we use (26) and (80) and
obtain

ν(θ, v) =
n

2L
c(θ, v) =

n

2LB(v)
1

√
1 + A(v) cos2 θ

. (96)

This again does not depend on the orientation if (94) holds.
In the case of a setup with two orthogonally oriented resonators the relative

change of the two frequencies is

ν(ϑ + π
2 , v) − ν(ϑ, v)
ν(π2 , v)

=

√
1 + A(v) cos2 ϑ

1 + A(v) sin2 ϑ
− 1 . (97)

The lack of any signal again yields (94).

Constancy of the Speed of Light

Here we take the isotropy of the speed of light as granted, that is, we assume
(94).

For an unequal arm interferometer we obtain from (11) and (95)

δφ = 2ω
(

l2
c2

− l1
c1

)
= 2

ω(l2 − l1)
B(v)

. (98)

This phase shift is independent from the velocity v of the apparatus if B(v) = K,
that is, g0(v) = Kg1(v), where K is some constant. The condition limv→0 g1(v) =
limv→0 g0(v) = 1 implies K = 1. As a consequence

B(v) = 1 ⇔ g0(v) = g1(v) . (99)
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Fig. 8. Example for isotropic (left) and anisotropic (right) propagation

Also the frequency of the radiation outcoupled from a resonator

ν(v) =
n

2L
c(v) =

n

2LB(v)
(100)

does not depend on the velocity of the resonator if (99) holds.
The independence from the orientation and the velocity of the apparatus

yields with (79)

b2(v) =
a2(v)

(1 − v2)2
and d(v) =

a(v)√
1 − v2

. (101)

or, equivalently,
g0(v) = g1(v) = g2(v) (102)

In this case the line element is ds2 = t2 − x2 = 0. The function a(v) is the only
unknown function remaining in the transformations (75,76)

T =
1

a(v)
(t + v · x) (103)

X =
√

1 − v2

a(v)

(
x⊥ +

1√
1 − v2

(
x‖ + vt

)
)

. (104)

Time Dilation

We still need a further experiment which can determine the remaining function
g0(v) or a(v) which gives the time dilatation. Such an experiment is the Doppler
shift, for example. In these experiment the frequency of radiation emitted from
moving sources will be measured. In this setup, both the laboratory as well as
the source will move with respect to the preferred frame. Therefore we need the
transformations between frames S and S′ moving with v and v′ with respect to
Σ. This transformation can be easily derived and reads

t′ =
a(v′)(1 + u · v)
a(v)(1 − u2)

(t− x · u) (105)

x′ =
a(v′)(1 + u · v)
a(v)

√
1 − u2

(
x −

(
1 − 1√

1 − u2

)
u(u · x)

u2
+

u√
1 − u2

t

)
, (106)

where u is the velocity of S′ with respect to S.
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Since experiments on time dilation measure the relation between t and t′ one
can determine the last unknown function g0(v) or a(v). For doing so we observe
the frequency of a radiating atom moving with velocity u in the laboratory S
or, equivalently, with velocity v′ with respect to Σ. We define a system S′ in
which the atom is at rest. For the determination of a(v) it is enough to have v,
v′, and thus u, in x-direction. S and S′ are related to Σ via (103,104) v and v′

as relative velocities.
We emphasize that we do know neither the magnitude not the direction of the

velocity v with respect to the preferred system Σ. Therefore we carry through
the following calculations in full generality.

The Doppler Formula

In the preferred frame Σ light rays obey the usual relation

(Tr − Ts)2 = |Xr − Xs|2 (107)

With (103,104) we can transform this to relations for the coordinates in S and
obtain

trs = xrs , (108)

where we defined

trs = tr − ts , xrs = |xrs| , xrs = xr − xs (109)

Now we consider the situation shown in the diagram

Σ(T,X)

vs

����
��

��
��

��
��

��
�

vr

���
��

��
��

��
��

��
��

v

��

Ss(t(s),x(s)) Sr(t(r),x(r))

S(t,x)

us

������������

ur

������������

(110)

and two light rays emitted at events (t(1)s ,x
(1)
s ) and (t(2)s ,x

(2)
s ) and received at

(t(1)r ,x
(1)
r ) and (t(2)r ,x

(2)
r ), see Fig. 9. us and ur are the velocities of the sender

and receiver with respect to S. Then in S

x(2)
rs − x(1)

rs = x(2)
r − x(1)

r − x(2)
s + x(1)

s = ur∆tr − us∆ts , (111)

where ∆ts = t
(2)
s − t

(1)
s and ∆tr = t

(2)
r − t

(1)
r . From (108) and (111) we obtain

∆tr = t(2)s + x(2)
rs − (t(1)s + x(1)

rs )
= ∆ts + n · (x(2)

rs − x(1)
rs )

= ∆ts + n · (ur∆tr − us∆ts) , (112)
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t

x

sender

receivert
(1)
s

t
(2)
s

t
(1)
r

t
(2)
r

∆ts
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Fig. 9. The observed frequency 1/∆tr is function of the emitted frequency 1/∆ts

where we used |x(2)
rs | = |x(1)

rs |+(x(2)
rs −x

(1)
rs )∇|x(1)

rs | and n = xrs/|xrs|. This gives

∆tr =
1 − n · us

1 − n · ur
∆ts . (113)

We still have to replace the coordinate times ∆tr and ∆ts by the correspond-
ing eigentimes ∆t

(r)
r and ∆t

(s)
s . For doing so we use (103)

Ts,r =
1

a(vs,r)

(
t(s,r) + vs,r · x(s,r)

)
, (114)

where vs is the relative velocity of the sender with respect to the preferred frame
Σ. Since the clock of the sender/receiver is at rest in Ss,r we have xs,r = 0 and

∆Ts,r =
1

a(vs,r)
∆t(s,r)s,r . (115)

We furthermore get from (103)

∆Ts,r =
1

a(v)
(∆ts,r + v ·∆xs,r) =

1
a(v)

(1 + v · us,r)∆ts,r . (116)

With that we can eliminate ∆Ts,r and, thus, can express the eigentime ∆t
(s,r)
s,r

by ∆ts,r

∆t(s,r)s,r =
a(v′s,r)
a(v)

(1 + v · us,r)∆ts,r . (117)

In terms of the frequencies defined by νs,r = 1/∆t
(s,r)
s,r we thus have

νr

νs
=

∆t
(s)
s

∆t
(r)
r

=
a(vs) (1 + v · us) (1 − n · ur)
a(vr) (1 + v · ur) (1 − n · us)

. (118)
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We specialize to a receiver at rest in S, ur = 0, and finally obtain the Doppler
formula we need

νr

νs
=

a(v′s) (1 + v · us)
a(v)(1 − n · us)

. (119)

The Experiment

If one measures the frequency emitted by a moving atom parallel and anti–
parallel to the velocity of the atom, then the experiments gives (and this is also
what SR predicts) that the product is just the square of the frequency of the
atom at rest

ν+
r ν−

r = ν2
s . (120)

With (119) this means (for ν+
r we chose the direction n = n0, and for ν−

E the
direction n = −n0)

ν+
r

νs

ν−
r

νs
=

a(v′s) (1 + v · us)
a(v)(1 − n0 · us)

a(v′s) (1 + v · us)
a(v)(1 + n0 · us)

=
a2(v′s) (1 + v · us)

2

a2(v)(1 − u2
s )

= 1 (121)

with us = n0 · uS , so that

a(v′s)(1 + v · us)
a(v)

=
√

1 − u2
s . (122)

We abbreviate vs = v and us = u and use this result in the transformations
(105,106)

t′ =
1√

1 − u2
(t− x · u) (123)

x′ = x −
(

1 − 1√
1 − u2

)
u(u · x)

u2
+ ut . (124)

This are the ordinary Lorentz–transformations. Any information about the state
of motion with respect to Σ disappeared. The preferred frame Σ plays no role
anymore.

We are also in the position to determine the function a(v): All considerations
above hold for all systems S and S′, so that we can assume v = 0 for a particular
system S. Then, from (122) we infer a(u) =

√
1 − u2a(0). Since we should obtain

the identity for u = 0, compare (61), we finally obtain a(0) = 1. Therefore, with
three experiments we were able to determine all three parameter functions a(v),
b(v) and d(v).

5.3 Linearization of the Robertson Test Theory

Since in all laboratory experiments the velocities are relatively small compared
to the speed of light and since also the velocity of the Earth with respect to the
Sun and the cosmological preferred frame is small, we can expand the functions
gr(v) (r = 1, 2, 3) with respect to the velocities
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gr(v) = 1 +
1
2
g0
rv

2 + . . . , (125)

where we used (61). As a consequence, the determination of the functions gr(v)
reduces to the determination of three parameters g0

r .
In this approximation the important combinations are given by

g2(v) − g1(v)
g1(v)

=
1
2
(
g0
2 − g0

1

)
v2,

∣
∣
∣
∣
g0(v)
g1(v)

− 1
∣
∣
∣
∣ =

1
2

∣
∣g0

0 − g0
1

∣
∣ v2 (126)

and g0(v) = 1+ 1
2g

0
0v

2. In this approximation the Michelson–Morley experiment
implies g0

1 = g0
2 and the Kennedy–Thorndike-experiment g0

0 = g0
1 . The time

dilation experiment yields g0
0 = 0. The parameter combinations g0

2 − g0
1 and

g0
0 − g0

1 will show up again in the Mansouri–Sexl test theory.

6 The General Formalism

Based on the transformations (56,57), the line element (59) and the correspond-
ing speed of light (60) we describe now all experiments without the assumption
of Einstein synchronization. We will show that again the three previous experi-
ments are enough to characterize Lorentz invariance. However, the basic physical
quantities will be slightly different, namely the two-way speed of light and the
two-way Doppler shift.

6.1 The Frame

Though the one-way velocity of light depends on the synchronization parameter,
the two-way velocity defined by

2
c(2)(v, ε, ϑ, ϑ′)

=
1

c(v, ε, ϑ, ϑ′)
+

1
c(v, ε, ϑ + π, ϑ′)

(127)

has the same form as the one-way velocity of light under the assumption of
Einstein–synchronization

c(2)(v, ε, ϑ, ϑ′) = c(2)(ϑ, v) =
1

B(v)
1

√
1 + A(v) cos2 ϑ

, (128)

which no longer depends on ε.
Since the two-way velocity of light is exactly the same as the one-way velocity

for Einstein synchronization, the results (101) for the experiments testing the
isotropy and constancy of the speed of light are also the same and, thus, need not
to be repeated. The only nontrivial experiment is the time dilation experiment.

We use the results (101) in order to eliminate b(v) and d(v) in (56,57)
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T =
1

a(v)
(t− ε · x) (129)

X =
√

1 − v2

a(v)

(
x −

(
1 −

√
1 − v2

) v(v · x)
v2

)
− 1

a(v)
(v(ε · x) − vt) ,

(130)

and in the expression for the light cone in S

0 = T 2 − X2 =
1 − v2

a2(v)

(
t2 − 2 (ε + v) · xt− x2 + ((ε + v) · x)2

)
, (131)

which is the SR lightcone for arbitrary synchronization. Again, we have to de-
termine the remaining function a(v).

In order to discuss time dilation effects we again have to consider the trans-
formation between two systems S and S′ moving with v and v′ with respect to
the preferred frame Σ. Using (129,130), a lengthy calculation yields

t′ =
a(v′)
a(v)

(t− ε · x) + ε′ · x′ (132)

x′ =
a(v′)γ′

a(v)γ

(
x + v

(
γ (t− ε · x) −

(
1 − 1

γ

)
(v · x)

v2

)

+v′
(
γ′− 1
v′2

(
v′ · x −

(
1 − 1

γ

)
(v · x)(v′ · v)

w2
+ (v′ · v)γ (t− ε · x)

)

−γ′γ (t− ε · x))) (133)

where γ′ = γ(v′).

6.2 Discussion of the Experiments: Time Dilatation

The Doppler Formula

Again we calculate and use the Doppler effect for moving atoms in order to
determine the time dilatation. As before, we have to calculate the time differ-
ences between the emission and reception times of two light rays, see Fig. 9 and
diagram (110). Again we can start from (107), use (129,130), and obtain

∆tr =
1 − (n + w + ε) · vs

1 − (n + w + ε) · vr
∆ts . (134)

what generalizes (113). We replace the time differences ∆tr and ∆ts by the times
shown by moving clocks, that is, by the time of the moving system. For that we
need (129,130). We get

T =
1

a(vr,s)

(
t(r,s) − ε(r,s) · x(r,s)

)
and T =

1
a(v)

(t− ε · x) . (135)

The clocks are at rest in Sr,s and move with ur,s with respect to Sr,s. This implies
x

(r,s)
r,s = 0 and xr,s = ur,str,s. Therefore we have two relations
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Tr,s =
1

a(vr,s)
t(r,s)r,s and Tr,s =

1
a(v)

(1 − ε · ur,s) tr,s (136)

from which we obtain the measured time differences ∆t
(r,s)
r,s in terms of the co-

ordinate time differences ∆tr,s

∆t(r,s)r,s =
a(vr,s)
a(v)

(1 − ε · ur,s)∆tr,s . (137)

With the frequencies νr,s = 1/∆t
(r,s)
r,s we thus obtain from (113)

νr

νs
=

a(v)
a(vr)

a(vs)
a(v)

1 − (n + v + ε) · vr

1 − (n + v + ε) · vs

1 − ε · us

1 − ε · ur
. (138)

For a receiver at rest in S (ur = 0) we finally obtain the Doppler formula for
arbitrary synchronization

νr

νs
=

a(vs)
a(vr)

1 − ε · us

1 − (n + v + ε) · us
. (139)

The Experiment

Again we calculate the product of the frequencies measured parallel and anti-
parallel to the velocity of a moving radiating atom

ν+
r ν−

r

ν2
s

=
a(vs)
a(vr)

1 − ε · us

1 − (n + v + ε) · us

a(vs)
a(vr)

1 − ε · us

1 − (−n + v + ε) · us

=
a2(vs)
a2(vr)

(1 − ε · us)
2

(1 − (v + ε) · us)
2 − u2

s

. (140)

The result of the experiment is ν+
r ν−

r = ν2
s so that

a(vs)
a(v)

(1 − ε · us) =
√

(1 − (v + ε) · us)
2 − u2

s . (141)

This result allows us to determine the factor a(v′)γ′/(a(v)γ) in (132,133)

a(vs)γ(vs)
a(v)γ(v)

=
γ(vs)

√
(1 − (v + ε) · uS)2 − u2

S

γ(v) (1 − ε · uS)
= 1 , (142)

where we used (69) in order to calculate γ(vs) as function of γ(v). With this result
the transformations (132,133) become the Lorentz transformations between two
arbitrarily synchronized reference frames. From the validity of (142) for all v and
vs we again infer that a(v) = a(0)

√
1 − v2. Together with a(0) = 1 from (61) we

finally get a(v) =
√

1 − v2. Furthermore, from (101) we obtain b(v) = 1/
√

1 − v2

and d(v) = 1.
As a result, we obtain the Lorentz transformations for arbitrary synchroniza-

tion [20–25].
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7 The Mansouri-Sexl Test Theory

7.1 The Frame

Since most of the experiments are carried through at small velocities, Mansouri
and Sexl performed an expansion of the functions a(v),b(v), d(v) and ε(v) with
respect to the velocity

a(v) = 1 +
(
α− 1

2

)
v2 +

(
α2 −

1
8

)
v4 + . . . = 1 + αMSv2 + αMS

2 v4 + . . . (143)

b(v) = 1 +
(
β +

1
2

)
v2 +

(
β2 +

3
8

)
v4 + . . . = 1 + βMSv2 + βMS

2 v4 + . . . (144)

d(v) = 1 + δv2 + δ2v
4 + . . . (145)

ε = (ε− 1)v
(
1 + ε2v

2 + . . .
)
. (146)

The parameter functions are now replaced by a few constant parameters. Here
αMS and βMS are parameters originally introduced by Mansouri and Sexl. Our
parameters are chosen so that they vanish if SR is valid, compare [26]. In the
case of Einstein-synchronization also ε vanishes. For simplicity we restrict in the
following to first order in v2. For the next order see [27].

In first order we obtain for the line element

s2 =
[
1 − 2αv2

]
t2 − 2

[
ε + (α− β − 2αε− ε2 + εε2)v2

]
v · xt

−
[
1 − 2δv2

]
x2 +

[
ε2 + 2(β − δ)

]
(v · x)2 , (147)

for the one-way velocity of light

c(ϑ, v) = 1 − εv cosϑ−
[
δ − α + (β − δ + ε2) cos2 ϑ

]
v2 , (148)

and for the two-way velocity of light defined in (127)

c(2)(ϑ, v) = 1 +
[
δ − α + (β − δ) cos2 ϑ

]
v2 . (149)

The relative change of the speed of light

δϑc

c
= (δ − β)v2 sin2 ϑ (150)

δvc

c
= 2

(
δ − α + (β − δ) cos2 ϑ

)
v · δv (151)

relates this formalism to the model independent description.
With (79) and (125) we can relate the linearized Robertson–parameters to

the Mansouri–Sexl–parameters

g0
2 − g0

1 = δ − β , g0
0 − g0

1 = β − α , g0
0 = −2α . (152)

Since synchronization does not play a role in the interpretation of experiments,
the Mansouri–Sexl test theory is equivalent to the linearizes Robertson test the-
ory.

Since we now have only three parameters only three experiments are needed
in order to fix the theory.
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7.2 Discussion of the Experiments

Isotropy of the Speed of Light

With (148) the phase shift for a general interference experiment is

∆φ(ϑ, v) =
ω

c
{2(l1 − l2)

+ [(2α− β − δ)(l1 − l2) + (δ − β)(l1 + l2) cos(2ϑ)] v2
}

. (153)

For a Michelson–Morley experiment we choose l1 = l2 = l and obtain

∆φ(ϑ, v) = 2
lω

c

[
(δ − β)v2 cos(2ϑ)

]
. (154)

Independence from the orientation implies

δ − β = 0 . (155)

For resonators we obtain with (26) and (149) the frequency shift

ν(ϑ, v) =
n

L

{
1 +

[
δ − α + (β − δ) cos2 ϑ

]
v2
}

, (156)

which in the case of isotropy again implies (155). For the comparison of two
orthogonally mounted resonators we obtain the relative beat frequency

ν(ϑ, v) − ν(0, v)
ν(0, v)

= (δ − β)v2 sin2 ϑ . (157)

Constancy of the Speed of Light

If we assume isotropy δ = β then we obtain for a Kennedy–Thorndike-
experiment, that is l1 �= l2 in (153), the phase shift

∆φ(v) = 2(l1 − l2)ω
(
1 + (α− β)v2

)
. (158)

If this does not depend on the velocity of the apparatus, then

α− β = 0 . (159)

The frequency in a resonator (156) now is

ν(v) =
cn

2L
[
1 + (β − α)v2

]
, (160)

which does not depend on v if (159) holds.

Time Dilation

Since we discussed these experiments already in the general framework, there is
no need to repeat it in this approximation. The result of the easy calculation is
is that the exact result a(v) =

√
1 − v2 in its linearized form now reads α = 0.

Therefore we obtain from (159) β = 0 and from (155) δ = 0. Therefore we were
able to determine all three parameters α, β and δ from the outcome of three
experiments.
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8 Discussion

8.1 Summary

We introduces four frames for the discussion of experiments. Three of these
frames are special cases of the general framework, see Fig. 10. These special cases
are defined by choosing the Einstein synchronization and by a linearization of the
theory for small velocities. Physical results should be independent of the chosen
synchronization. The description of experiments with arbitrary synchronization
forces one to choose appropriate synchronization independent observables.

While this kinematical test theory has the merit for the first time to identify
the consequences of certain experiments for the theoretical description, which led
to the notion of the “three classical tests” of SR, there are assumptions made
which need to be discussed.

8.2 Advantages of Kinematical Test Theories

There are two important and far-reaching advantages:

General test theory

parameter a(v), b(v), d(v), ε(v)
transformation (56,57)

line element (59)
c from (60)

Robertson test theory

parameter g0(v), g1(v), g2(v)
transformation (75,76)

line element (78)
c from (80)

Mansouri–Sexl test theory

parameter α, β, δ, ε
c from (148)

Robertson–Mansouri–Sexl test theory

Parameter α, β, δ
c from (149)

Einstein–
synchronization

small
velocities

Einstein–
synchronization

small
velocities

Fig. 10. The relations among the various kinematical test theories. Einstein synchro-
nization connects physically equivalent theories
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1. Kinematical test theories are independent from any particle model; they are
universal. Since the transformation between frames of reference are under
consideration, all physical phenomena are treated in the same way.

2. The test theory is characterized by three parameters only with the conse-
quence that only three experiments are needed in order to fix the theory.

8.3 Disadvantages of Kinematical Test Theories

There are a few severe problems with kinematical test theories based on the
assumptions made for setting up this kinematical test theory:

1. The kinematical tests theories need a preferred frame. The choice of a pre-
ferred frame may not be unique. Today, one may identify this preferred frame
by the cosmological frame defined by the isotropy of the microwave back-
ground radiation [28]. Though it is not very probably, it is at least possible
in principle, that a stochastic gravitational wave background radiation may
define another preferred frame different from the microwave background.
Since all estimates describing the degree of validity of SR use the velocity
with respect to the preferred frame, the characterization thus depends on our
knowledge of cosmology. If we choose another preferred frame, the estimates
will change. Therefore, these test theories are intrinsically incomplete. One
necessarily needs more input than provided by the kinematical test theory.

2. One assumes a certain geometry of the preferred frame (what has nothing
to do with the transformation laws). That means that in Σ one assumes an
isotropic speed of light. In principle this also should be subject to experi-
mental proof. One way to handle such a question might be to enlarge the
set of parameters by introducing a general propagation through

dT 2 = G2
1dX

2 −G2
2dY

2 −G2
3dZ

2 (161)

with undetermined parameters G1, G2, and G3. Even more general propaga-
tion structures like that of Finslerian structure dT = f(dx), f being homo-
geneous of degree one in dX and non-degenerate, are possible. It should be
no problem to carry through the above calculations for this more general set-
ting. However, then more experiments are needed in order to fix the enlarged
set parameters. That means, the discussion of experiments for determining
the final structure of space-time will be more intriguing.

3. In kinematical test theories the violation of Lorentz invariance can depend
on velocity only. A violation of Lorentz invariance may come in through some
cosmologically given vector or tensor fields which may occur, e.g., in string
theories with spontaneous broken Lorentz symmetry, where the ground state
of the space–time geometry shows a broken symmetry which is not present
in the formulation of the theory [29,30].

4. Kinematical test theories are not only incomplete, they might be even incon-
sistent if one considers light to be a consequence of the Maxwell equations.
This can be seen as follows: If the light depends on the state of motion of the
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laboratory, then also the Maxwell equations have to depend on that state of
motion. That means that clocks and rods, which both are heavily determined
by the Maxwell equations, also depend on the state of motion. Furthermore,
they depend in a material-dependent way on th state of motion. Therefore,
there is no unique clock and rod. This, however, is part of the scheme of the
kinematical test theories.

5. Kinematical test theories cannot describe birefringence in vacuum which also
violates Lorentz invariance.

6. Generalizing this idea, kinematical test theories cannot treat a non–unique
c, that is, different limiting velocities for different particles. The dynamics
of particles is not treated in these kinematical test theories.

7. Furthermore, it is not possible to describe violations of LI by anisotropic
masses or anomalous spin couplings of Dirac particles.

8. Since in our scheme of kinematical test theories we assumed in Σ and, thus,
also in other frames S a unique light propagation, it is not possible to describe
a hypothetical dependence of c from the velocity of source.

All these problems do not occur in dynamical test theories which, by con-
struction, are complete.
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