Skip to main content

Quantum Optics and Experimental Gravitation

ABOUT OUR RESEARCH

Experiments with quantum gases and quantum sensors in extended free fall provide a unique approach towards tests of gravity theory and quantum physics in a new parameter regime. At the drop tower Bremen we are engaged in the development of new concepts and tools for space- and ground-based matter-wave interferometry and optically trapped nano-particles as well as tests of fundamental physics using these quantum sensors.

What is a Bose-Einstein condensate?

Sven Herrmann, head of the “Quantum Optics and Experimental Gravitation” research group, explains to us what is being researched in this group, why reaching ultra-cold temperatures is important for quantum researchers, and what a Bose-Einstein condensate actually is, using the QUANTUS project as an example.

Our fields of research

  • Interferometry with quantum gases in extended free fall
  • Bose-Einstein condensation in magnetic and optical traps
  • Atom optics such as large momentum transfer beam splitters and matter wave collimation
  • Tests of fundamental physics with matterwave interferometers and atomic clocks
  • Optically levitated nanoparticles

CONTACT

Matterwave interferometry with Bose Einstein condensates in extended free fall

The Bremen drop tower facilities provide us with the unique opportunity to study quantum gases in extended free fall. Such long free fall times are particularly appealing for matter wave interferometry, where the interferometer phase often scales quadratically with free fall time. Matter wave interferometers have been used in laboratories worldwide to perform precision measurements of gravitational forces and to test fundamental physics, and the prospect of largely extending their sensitivity in a microgravity environment is a strong motivation of our research. To make use of seconds of free fall however requires ultra-cold gases, which is why we use Bose-Einstein condensates where we have managed to reduce their internal kinetic energy into the pk-Kelvin regime.

All-optical BEC for microgravity

The PRIMUS project takes an all-optical approach for BEC generation in microgravity. Therefore, an optical dipole trap is set-up in a drop tower experiment for use in the Bremen drop tower. The key component is a far-off resonant, high power fiber laser (45W, 1064nm) used to implement a crossed optical dipole trap. After transferring the atoms to the dipole trap subsequent evaporative cooling is used to create a Bose-Einstein condensate. On the path to the Bose-Einstein condensation in the drop tower, efficiency is key. Therefore, so-called painted optical potentials are implemented. Here the trapping beam is spatially modulated in order to dynamically control the trapping volume. This also provides the opportunity to use potential shapes substantially differing from the harmonic potentials typically used in BEC experiments. Box-shaped potentials will allow to study quantum gases of homogenous density. Here microgravity is crucial in order to overcome buoyance forces disturbing the distribution in ground-based experiments.

Nano particles in microgravity

Optically levitated nano-particles are promising systems to realize sensitive force sensors. These sensors could benefit from shallow traps or extended drift time as available in microgravity. We are thus working on a free fall experiment with such a system. With parametric cooling of those particles to lowest energies a long-term perspective could be to reach the quantum regime and observe quantum interference with these macroscopic particles. 

Tests of relativity with satellite clocks

Atomic clocks onboard Earth orbiting satellites are exposed to large modulations in velocity and gravitational potential. Thus, they allow for sensitive tests of principles and predictions of Special and General Relativity. In our group we investigate various such scenarios for current and future opportunities to perform such tests. For example we could make use of two satellites of the European GNSS Galileo that were accidentally injected into eccentric orbits to obtain a sensitive test of the gravitational redshift. Along this line, we are investigating whether other aspects of General Relativity such as gravito-magnetism could be probed from such systems as well.

{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Marian Woltmann

Researcher

+49 421 218 - 57931

marian.woltmann
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: '{settings.defaultEmployeePictureAltDE.value}', else: '{settings.defaultEmployeePictureAltEN.value}')}

Ekim Hanimeli

Researcher

+49 421 218 - 57849

ekim.hanimeli
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Marius Prinz

Researcher

+49 421 218 - 57848

marius.prinz
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Govindarajan Prakash

Researcher

+49 421 218 - 57949

govindarajan.prakash
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Jan Stiehler

Researcher

+49 421 218 - 57844

jan.stiehler
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Yann Sperling

Researcher

+49 421 218 - 57865

yann.sperling

The list below shows the latest 25 publications of this research group. For the complete, searchable list of ZARM publications, please click more

2024

Hackmann, E.; Herrmann, S.; List, M.; Lämmerzahl, C.
Einstein auf dem Prüfstand - Neue Präzisionstests bestätigen die Allgemeine Relativitätstheorie
Physik Journal 2 / 2024 :S. 24—32
2024

2023

Raudonis, M.; Roura, A; Meister, M.; Lotz, C.; Overmeyer, L.; Herrmann, S.; Gierse, A.; Lämmerzahl, C.; Bigelow, N.; Lachmann, M.; Piest, B.; Gaaloul, N.; Rasel, E.M.; Schubert, C.; Herr, W.; Deppner, C.; Ahlers, H.; Ertmer, W.; Williams, J.; Lundblad, N.; Wörner, L.
Microgravity facilities for cold atom experiments
Quantum Science and Technology, 8 (4) :044001
August 2023
Publisher: IOP Publishing

Herrmann, S.; Rätzel, D.
Quantum Tests of Gravity
Modified and Quantum Gravity: From Theory to Experimental Searches on All Scales
Publisher: Springer International Publishing
2023

2022

Albers, H.; Corgier, R.; Herbst, A.; Rajagopalan, A.; Schubert, C.; Vogt, C.; Woltmann, M.; Lämmerzahl, C.; Herrmann, S.; Charron, E.; Ertmer, W.; Rasel, E.M.; Gaaloul, N.; Schlippert, D.
All-optical matter-wave lens using time-averaged potentials
Communications Physics, 5 (1) :60
March 2022
ISSN: 2399-3650

2021

Neumann, A.; Gebbe, M.; Walser, R.
Aberrations in (3+1)-dimensional Bragg diffraction using pulsed Laguerre-Gaussian laser beams
Phys. Rev. A, 103 :043306
2021

Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André; Corgier, Robin; Charron, Eric; Guéry-Odelin, David; Gaaloul, Naceur; Lämmerzahl, Claus; Peters, Achim; Windpassinger, Patrick; Rasel, Ernst M.
Collective-Mode Enhanced Matter-Wave Optics
Phys. Rev. Lett, 127
2021

Schuldt, Thilo; Gohlke, Martin; Oswald, Markus; Wüst, Jan; Blomberg, Tim; Döringshoff, Klaus; Bawamia, Ahmad; Wicht, Andreas; Lezius, Matthias; Voss, Kai; Krutzik, Markus; Herrmann, Sven; Kovalchuk, Evgeny; Peters, Achim; Braxmaier, Claus
Optical clock technologies for global navigation satellite systems
GPS Solutions, 25
2021

Gebbe, Martina; Siemß, Jan-Niclas; Gersemann, Matthias; Müntinga, Hauke; Herrmann, Sven; Lämmerzahl, Claus; Ahlers, Holger; Gaaloul, Naceur; Schubert, Christian; Hammerer, Klemens; Abend, Sven; Rasel, Ernst M.
Twin-lattice atom interferometry
Nature Communications, 12 :2544
2021

2020

Gebbe, Martina
Atom interferometry in a twin lattice
PhD Thesis
2020

Gersemann, Matthias; Gebbe, Martina; Abend, Sven; Schubert, Christian; Rasel, Ernst M.
Differential interferometry using a Bose-Einstein condensate
European Physical journal D, 74 :203
2020

Vogt, Christian; Woltmann, Marian; Herrmann, Sven; Lämmerzahl, Claus; Albers, Henning; Schlippert, Dennis; Rasel, Ernst M.
Evaporative cooling from an optical dipole trap in microgravity
Phys. Rev. A, 101 :013634
2020

Albers, Henning; Herbst, Alexander; Richardson, Logan L.; Heine, Hendrik; Nath, Dipankar; Hartwig, Jonas; Schubert, Christian; Vogt, Christian; Woltmann, Marian; Lämmerzahl, Claus; Herrmann, Sven; Ertmer, Wolfgang; Rasel, Ernst M.; Schlippert, Dennis
Quantum test of the Universality of Free Fall using rubidium and potassium
Eur. Phys. J. D, 74 :145
2020

2019

Vogt, Christian
An Optical DipoleTrap in Microgravity
PhD Thesis
2019

Trimeche, A.; Battelier, B.; Becker, D.; Bertoldi, A.; Bouyer, P.; Braxmaier, C.; Charron, E.; Corgier, R.; Cornelius, M.; Douch, K.; Gaaloul, N.; Herrmann, S.; Müller, J.; Rasel, E.; Schubert, C.; Wu, H.; Santos, F. Pereira
Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry
Classical and Quantum Gravity, 36 :215004
2019

Müntinga, H.
Matter-wave Interferometry for space-borne Inertial Sensors
PhD Thesis
2019

2018

Sternke, Tammo
An ultracold high-flux source for matter-wave interferometry in microgravity
PhD Thesis
2018

Gürlebeck, Norman; Wörner, Lisa; Schuldt, Thilo; Döringshoff, Klaus; Gaul, Konstantin; Gerardi, Domenico; Grenzebach, Arne; Jha, Nandan; Kovalchuk, Evgeny; Resch, Andreas; Wendrich, Thijs; Berger, Robert; Herrmann, Sven; Johann, Ulrich; Krutzik, Markus; Peters, Achim; Rasel, Ernst M.; Braxmaier, Claus
BOOST: A satellite mission to test Lorentz invariance using high-performance optical frequency references
Phys. Rev. D, 97 :124051
2018

Kubelka-Lange, André
Entwicklung einer hocheffektiven Magnetfeldabschirmung für die Forschungsraketenmission MAIUS-1
PhD Thesis
2018

Becker, D.; Lachmann, M. D.; Seidel, S. T.; Ahlers, H.; Dinkelaker, A. N.; Grosse, J.; Hellmig, O.; Müntinga, H.; Schkolnik, V.; Wendrich, T.; Wenzlawski, A.; Weps, B.; Corgier, R.; Franz, T.; Gaaloul, N.; Herr, W.; Lüdtke, D.; Popp, M.; Amri, S.; Duncker, H.; Erbe, M.; Kohfeldt, A.; Kubelka-Lange, A.; Braxmaier, C.; Charron, E.; Ertmer, W.; Krutzik, M.; Lämmerzahl, C.; Peters, A.; Schleich, W. P.; Sengstock, K.; Walser, R.; Wicht, A.; Windpassinger, P.; Rasel, E. M.
Space-borne Bose–Einstein condensation for precision interferometry
Nature, 562 :391-395
2018

Herrmann, Sven; Finke, Felix; Lülf, Martin; Kichakova, Olga; Puetzfeld, Dirk; Knickmann, Daniela; List, Meike; Rievers, Benny; Giorgi, Gabriele; Günther, Christoph; Dittus, Hansjörg; Prieto-Cerdeira, Roberto; Dilssner, Florian; Gonzalez, Francisco; Schönemann, Erik; Ventura-Traveset, Javier; Lämmerzahl, Claus
Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit
Phys. Rev. Lett., 121 :231102
2018

2017

Kulas, S.; Vogt, C.; Resch, A.; Hartwig, J.; Ganske, S.; Matthias, J.; Schlippert, D.; Wendrich, T.; Ertmer, W.; Rasel, E. M.; Damjanic, M.; Weßels, P.; Kohfeldt, A.; Luvsandamdin, E.; Schiemangk, M.; Grzeschik, C.; Krutzik, M.; Wicht, A.; Peters, A.; Herrmann, S.; Lämmerzahl, C.
Miniaturized lab system for future cold atom experiments in microgravity
Microgravity Science and Technology, 29 :37-48
2017

2016

Kubelka-Lange, A.; Herrmann, S.; Grosse, J.; Lämmerzahl, C.; Rasel, E. M.; Braxmaier, C.
A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket
Rev. Sci. Instr., 87 :063101
2016

Abend, S.; Gebbe, M.; Gersemann, M.; Ahlers, H.; Müntinga, H.; Giese, E.; Gaaloul, N.; Schubert, C.; Lämmerzahl, C.; Ertmer, W.; Schleich, W. P.; Rasel, E. M.
Atom-Chip Fountain Gravimeter
Phys. Rev. Lett., 117 :203003
2016

Ahlers, H.; Müntinga, H.; Wenzlawski, A.; Krutzik, M.; Tackmann, G.; Abend, S.; Gaaloul, N.; Giese, E.; Roura, A.; Kuhl, R.; Lämmerzahl, C.; Peters, A.; Windpassinger, P.; Sengstock, K.; Schleich, W. P.; Ertmer, W.; Rasel, E. M.
Double Bragg Interferometry
Phys. Rev. Lett., 116 :173601
2016

Resch, Andreas
Hochstabiler optischer Resonator im Fallturmbetrieb für Präzisionsmessungen in Schwerelosigkeit
PhD thesis
2016