Skip to main content

Quantum Optics and Experimental Gravitation

ABOUT OUR RESEARCH

Experiments with quantum gases and quantum sensors in extended free fall provide a unique approach towards tests of gravity theory and quantum physics in a new parameter regime. At the drop tower Bremen we are engaged in the development of new concepts and tools for space- and ground-based matter-wave interferometry and optically trapped nano-particles as well as tests of fundamental physics using these quantum sensors.

What is a Bose-Einstein condensate?

Sven Herrmann, head of the “Quantum Optics and Experimental Gravitation” research group, explains to us what is being researched in this group, why reaching ultra-cold temperatures is important for quantum researchers, and what a Bose-Einstein condensate actually is, using the QUANTUS project as an example.

Our fields of research

  •     Interferometry with quantum gases in extended free fall
  •     Bose-Einstein condensation in magnetic and optical traps
  •     Atom optics such as large momentum transfer beam splitters and matter wave collimation
  •     Tests of fundamental physics with matterwave interferometers and atomic clocks
  •     Optically levitated nanoparticles

CONTACT

Matterwave interferometry with Bose Einstein condensates in extended free fall

The Bremen drop tower facilities provide us with the unique opportunity to study quantum gases in extended free fall. Such long free fall times are particularly appealing for matter wave interferometry, where the interferometer phase often scales quadratically with free fall time. Matter wave interferometers have been used in laboratories worldwide to perform precision measurements of gravitational forces and to test fundamental physics, and the prospect of largely extending their sensitivity in a microgravity environment is a strong motivation of our research. To make use of seconds of free fall however requires ultra-cold gases, which is why we use Bose-Einstein condensates where we have managed to reduce their internal kinetic energy into the pk-Kelvin regime.

All-optical BEC for microgravity

The PRIMUS project takes an all-optical approach for BEC generation in microgravity. Therefore, an optical dipole trap is set-up in a drop tower experiment for use in the Bremen drop tower. The key component is a far-off resonant, high power fiber laser (45W, 1064nm) used to implement a crossed optical dipole trap. After transferring the atoms to the dipole trap subsequent evaporative cooling is used to create a Bose-Einstein condensate. On the path to the Bose-Einstein condensation in the drop tower, efficiency is key. Therefore, so-called painted optical potentials are implemented. Here the trapping beam is spatially modulated in order to dynamically control the trapping volume. This also provides the opportunity to use potential shapes substantially differing from the harmonic potentials typically used in BEC experiments. Box-shaped potentials will allow to study quantum gases of homogenous density. Here microgravity is crucial in order to overcome buoyance forces disturbing the distribution in ground-based experiments.

Nano particles in microgravity

Optically levitated nano-particles are promising systems to realize sensitive force sensors. These sensors could benefit from shallow traps or extended drift time as available in microgravity. We are thus working on a free fall experiment with such a system. With parametric cooling of those particles to lowest energies a long-term perspective could be to reach the quantum regime and observe quantum interference with these macroscopic particles. 

Tests of relativity with satellite clocks

Atomic clocks onboard Earth orbiting satellites are exposed to large modulations in velocity and gravitational potential. Thus, they allow for sensitive tests of principles and predictions of Special and General Relativity. In our group we investigate various such scenarios for current and future opportunities to perform such tests. For example we could make use of two satellites of the European GNSS Galileo that were accidentally injected into eccentric orbits to obtain a sensitive test of the gravitational redshift. Along this line, we are investigating whether other aspects of General Relativity such as gravito-magnetism could be probed from such systems as well.

{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Marian Woltmann

Researcher

+49 421 218 - 57931

marian.woltmann
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: '{settings.defaultEmployeePictureAltDE.value}', else: '{settings.defaultEmployeePictureAltEN.value}')}

Ekim Hanimeli

Researcher

+49 421 218 - 57849

ekim.hanimeli
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Marius Prinz

Researcher

+49 421 218 - 57848

marius.prinz
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Govindarajan Prakash

Researcher

+49 421 218 - 57949

govindarajan.prakash
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Jan Stiehler

Researcher

+49 421 218 - 57844

jan.stiehler
{f:if(condition: address.contentObjectData.sys_language_uid == 2, then: 'Ein Bild von {address.firstName} {address.lastName}', else: 'Image of {address.firstName} {address.lastName}')}

Yann Sperling

Researcher

+49 421 218 - 57865

yann.sperling

The list below shows the latest 25 publications of this research group. For the complete, searchable list of ZARM publications, please click more

2016

Kaltenbaek, R.; Aspelmeyer, M.; Barker, P. F; Bassi, A.; Bateman, J.; Bongs, K.; Bose, S.; Braxmaier, C.; Brukner, Č.; Christophe, B.; Chwalla, M.; Cohadon, P.; Cruise, A. Michael; Curceanu, C.; Dholakia, K.; Diósi, L.; Döringshoff, K.; Ertmer, W.; Gieseler, J.; Gürlebeck, N.; Hechenblaikner, G.; Heidmann, A.; Herrmann, S.; Hossenfelder, S.; Johann, U.; Kiesel, N.; Kim, M.; Lämmerzahl, C.; Lambrecht, A.; Mazilu, M.; Milburn, G. J; Müller, H.; Novotny, L.; Paternostro, M.; Peters, A.; Pikovski, I.; Zanoni, A. Pilan; Rasel, E. M; Reynaud, .; Riedel, Charles J.; Rodrigues, M.; Rondin, L.; Roura, A.; Schleich, W. P; Schmiedmayer, J.; Schuldt, T.; Schwab, K. C; Tajmar, M.; Tino, G. M; Ulbricht, H.; Ursin, R.; Vedral, V.
Macroscopic Quantum Resonators (MAQRO): 2015 update
EPJ Quantum Technology, 3 :5
2016

Kulas, Sascha
Realisierung eines kompakten Laborsystems zur Durchfuehrung atomoptischer Fallturmexperimente
PhD Thesis
2016

2015

Rudolph, J.; Herr, W.; Grzeschik, C.; Sternke, T.; Grote, A.; Popp, M.l; Becker, D.; Müntinga, H.; Ahlers, H.; Peters, A.; Lämmerzahl, C.; Sengstock, K.; Gaaloul, N.; Ertmer, W.; Rasel, E. M
A high-flux BEC source for mobile atom interferometers
New journal of Physics, 17 :065001
2015

Schuldt, T.; Schubert, C.; Krutzik, M.; Bote, L.G.; Gaaloul, N.; Hartwig, J.; Ahlers, H.; Herr, W.; Posso-Trujillo, K.; Rudolph, J.; Seidel, S.; Wendrich, T.; Ertmer, W.; Herrmann, S.; Kubelka-Lange, A.; Milke, A.; Rievers, B.; Rocco, E.; Hinton, A.; Bongs, K.; Oswald, M.; Franz, M.; Hauth, M.; Peters, A.; Bawamia, A.; Wicht, A.; Battelier, B.; Bertoldi, A.; Bouyer, P.; Landragin, A.; Massonnet, D.; Lévèque, T.; Wenzlawski, A.; Hellmig, O.; Windpassinger, P.; Sengstock, K.; Klitzing, W.; Chaloner, C.; Summers, D.; Ireland, P.; Mateos, I.; Sopuerta, C. F.; Sorrentino, F.; Tino, G. M.; Williams, M.; Trenkel, C.; Gerardi, D.; Chwalla, M.; Burkhardt, J.; Johann, U.; Heske, A.; Wille, E.; Gehler, M.; Cacciapuoti, L.; Gürlebeck, N.; Braxmaier, C.; Rasel, E.M.
Design of a dual species atom interferometer for space
Experimental Astronomy, 39 :167-206
2015

2014

Milke, A.; Kubelka-Lange, A.; Gürlebeck, N.; Rievers, B.; Herrmann, S.; Schuldt, T.; Braxmaier, C.
Atom interferometry in space: Thermal management and magnetic shielding
Review of Scientific Instruments, 85 :083105
2014

Aguilera, D.N.; Ahlers, H.; Battelier, B.; Bawamia, A.; Bertoldi, A.; Bondarescu, R.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Chaloner, C.; Chwalla, M.; Ertmer, W.; Franz, M.; Gaaloul, N.; Gehler, M.; Gerardi, D.; Gesa, L.; Gürlebeck, N.; Hartwig, J.; Hauth, M.; Hellmig, O.; Herr, W.; Herrmann, S.; Heske, A.; Hinton, A.; Ireland, P.; Jetzer, P.; Johann, U.; Krutzik, M.; Kubelka, A.; Lämmerzahl, C.; Landragin, A.; Lloro, I.; Massonnet, D.; Mateos, I.; Milke, A.; Nofrarias, M.; Oswald, M.; Peters, A.; Posso-Trujillo, K.; Rasel, E.; Rocco, E.; Roura, A.; Rudolph, J.; Schleich, W.; Schubert, C.; Schuldt, T.; Seidel, S.; Sengstock, K.; Sopuerta, C. F.; Sorrentino, F.; Summers, D.; Tino, G. M.; Trenkel, C.; Uzunoglu, N.; Klitzing, W.; Walser, R.; Wendrich, T.; Wenzlawski, A.; Weßels, P.; Wicht, A.; Wille, E.; Williams, M.; Windpassinger, P.; Zahzam, N.
STE-QUEST—test of the universality of free fall using cold atom interferometry
Classical and Quantum Gravity, 31 :115010
2014

2013

Stephan, E. P.; Andres, M.; Banz, L.; Costea, A.; Nesemann, L.; Lämmerzahl, C.; Hackmann, E.; Herrmann, S.; Rievers, B.
High precision modeling towards the 10^-20 level
Zeitschr. f. angew. Mathematik und Mechanik, 93 :93-98
2013

Müntinga, H.; Ahlers, H.; Krutzik, M.; Wenzlawski, A.; Arnold, S.; Becker, D.; Bongs, K.; Dittus, H.; Duncker, H.; Gaaloul, N.; Gherasim, C.; Giese, E.; Grzeschik, C.; Hänsch, T. W.; Hellmig, O.; Herr, W.; Herrmann, S.; Kajari, E.; Kleinert, S.; Lämmerzahl, C.; Lewoczko-Adamczyk, W.; Malcolm, J.; Meyer, N.; Nolte, R.; Peters, A.; Popp, M.; Reichel, J.; Roura, A.; Rudolph, J.; Schiemangk, M.; Schneider, M.; Seidel, S.T.; Sengstock, K.; Tamma, V.; Valenzuela, T.; Vogel, A.; Walser, R.; Wendrich, T.; Windpassinger, P.; Zeller, W.; Zoest, T.; Ertmer, W.; Schleich, W.P.; Rasel, E.M.
Interferometry with Bose Einstein Condensates in Microgravity
Phys. Rev. Lett., 110 :093602
2013

Tino, G. M.; Sorrentino, F.; Aguilera, D.; Battelier, B.; Bertoldi, A.; Bodart, Q.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Gaaloul, N.; Gürlebeck, N.; Hauth, M.; Herrmann, S.; Krutzik, M.; Kubelka, A.; A.Landragin; Milke, A.; Peters, A.; Rasel, E. M.; Rocco, E.; Schubert, C.; Schuldt, T.; Sengstock, K.; Wicht, A.
Precision Gravity Tests with Atom Interferometry in Space
Nuclear Physics B, 243-244 :203-217
2013

2012

Braxmaier, C.; Dittus, H.; Foulon, B.; Göklü, E.; Grimani, C.; Guo, J.; Herrmann, S.; Lämmerzahl, C.; Ni, W-T.; Peters, A.; Rievers, B.; Samain, É.; Selig, H.; Shaul, D.; Svehla, D.; Touboul, P.; Wang, G.; Wu, A.-M.; Zakharov, A. F.
Astrodynamical Space Test of Relativity using Optical Devices I (ASTROD I)—a class-M fundamental physics mission proposal for cosmic vision 2015–2025: 2010 Update
Exp. Astron., 34 :181-201
2012

Herrmann, S.; Dittus, H.; Lämmerzahl, C.
Testing the equivalence principle with atomic interferometry
Class. Quant. Grav., 29 :184003
2012

2011

Rudolph, J.; Gaaloul, N.; Singh, Y.; Ahlers, H.; Herr, W.; Schulze, T.A.; Seidel, S.T.; Rode, C.; Schkolnik, V.; Ertmer, W.; Rasel, E.M.; Müntinga, H.; Könemann, T.; Resch, A.; Herrmann, S.; Lämmerzahl, C.; Zoest, T.v.; Dittus, H.; Vogel, A.; Wenzlawski, A.; Sengstock, K.; Meyer, N.; Bongs, K.; Krutzik, M.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Peters, A.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Schleich, W.P.; Walser, R.; Steinmetz, T.; Hänsch, T.W.; Reichel, J.
Degenerate quantum gases in micro gravity
Microgravity Science and Technology, 23 :287-292
2011

Sorrentino, F.; Bongs, K.; Bouyer, P.; Cacciapuoti, L.; Angelis, M. De; Dittus, H.; Ertmer, W.; Hartwig, J.; Hauth, M.; Herrmann, S.; Huang, K.; Inguscio, M.; Kajari, E.; Koenemann, T.; Laemmerzahl, C.; Landragin, A.; Modugno, G.; Santos, F. Pereira; Peters, A.; Prevedelli, M.; Rasel, E.; Schleich, W.; Schmidt, M.; Senger, A.; Sengstock, K.; Stern, G.; Tino, G.; Valenszuela, T.; Walser, R.; Windpassinger, P.
The Space Atom Interferometer project: status and prospects
journal of Physics: Conference Series, 327 :012050
2011

2010

Zoest, T.; Gaaloul, N.; Singh, Y.; Ahlers, H.; Herr, W.; Seidel, S. T.; Ertmer, W.; Rasel, E.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Schleich, W. P.; Walser, R.; Vogel, A.; Sengstock, K.; Bongs, K.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Schuldt, T.; Peters, A.; Könemann, T.; Müntinga, H.; Lämmerzahl, C.; Dittus, H.; Steinmetz, T.; Hänsch, T. W.; Reichel, J.
Bose-Einstein Condensation in Microgravity
Science, 328 :1540-1543
2010

Sorrentino, F.; Bongs, K.; Bouyer, P.; Cacciapuoti, L.; Angelis, M. De; Dittus, H.; Ertmer, W.; Giorgini, A.; Hartwig, J.; Hauth, M.; Herrmann, S.; Inguscio, M.; Kajari, E.; Könemann, T.; Laemmerzahl, C.; Landragin, A.; Modugno, G.; Santos, F. Pereira Dos; Peters, A.; Prevedelli, M.; Rasel, E.M.; Schleich, W.P.; Schmidt, M.; Senger, A.; Sengstok, K.; Stern, G.; Tino, G.M.; Walser, R.
SAI: a compact atom interferometer for future space missions
Microgravity Science and Technology, 22 :551-561
2010

Herrmann, S.; Göklü, E.; Müntinga, H.; Resch, A.; Zoest, T.v.; Dittus, H.; Lämmerzahl, C.
Testing Fundamental Physics with Degenerate Quantum Gases in Microgravity
Microgravity Science and Technology, 22 :529-538
2010